计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (11): 93-104.DOI: 10.3778/j.issn.1002-8331.2412-0324

• 目标检测专题 • 上一篇    下一篇

融合多注意力机制的轻量级无人机航拍小目标检测模型

涂育智,王法翔,吴春霖   

  1. 福州大学 物理与信息工程学院,福州 350116
  • 出版日期:2025-06-01 发布日期:2025-05-30

Lightweight UAV Aerial Small Object Detection Model Integrating Multi-Attention Mechanisms

TU Yuzhi, WANG Faxiang, WU Chunlin   

  1. School of Physics and Information Engineering, Fuzhou University, Fuzhou 350116, China
  • Online:2025-06-01 Published:2025-05-30

摘要: 无人机航拍中的目标检测面临诸多挑战,如检测目标小、尺度变化大以及计算能力受限等问题。针对现有小目标检测模型体积大、计算量高,难以在边缘设备上高效部署的问题,提出了一种基于YOLOv11改进的轻量化模型MA-YOLOv11s(multi-attention YOLOv11s)。选择性地引入小目标检测层,在提高检测能力的同时控制计算量增长。设计了融合多种注意力机制的轻量级特征提取模块C2SCSA和C2MCA,增强了模型对复杂背景中小目标的特征提取能力,同时保持了较低的计算开销。采用Soft-NMS-SIOU替代传统的NMS方法,显著提升了模型在密集重叠目标场景中的检测精度与鲁棒性。在VisDrone2019数据集的实验中,与YOLOv11s模型相比,MA-YOLOv11s仅用2.291×106的参数量和22.4 GFLOPs的计算量就将精确率、召回率、mAP50、mAP50:95分别提升8.9、1.3、10.9、9.7个百分点。实验结果表明,改进后的模型在保持小体积的同时展现了卓越的小目标检测性能。

关键词: 无人机(UAV), 小目标检测, 注意力机制, 轻量化, YOLOv11

Abstract: Object detection in aerial imagery captured by unmanned aerial vehicles (UAVs) faces significant challenges, such as detecting small-scale objects, handling variations in object sizes, and addressing limited computational resources. Existing small-object detection models, often large and computationally demanding, are unsuitable for deployment on edge devices. To address these limitations, the paper proposes a lightweight model, MA-YOLOv11s (multi-attention YOLOv11s), which builds on enhancements to YOLOv11. Firstly, it introduces selective small-object detection layers to improve performance while managing computational complexity. Secondly, this paper designs two lightweight feature extraction modules, C2SCSA and C2MCA, which integrate multiple attention mechanisms to enhance feature extraction for small objects in complex backgrounds while minimizing computational cost. Finally, it replaces the traditional NMS method with Soft-NMS-SIOU, significantly improving detection accuracy and robustness in scenarios with densely overlapping objects. In experiments on the VisDrone2019 dataset, compared to the YOLOv11s model, MA-YOLOv11s achieves improvements of 8.9, 1.3, 10.9, and 9.7 percentage points in precision, recall, mAP50, and mAP50:95, respectively, with only 2.291×106 parameters and 22.4 GFLOPs of computation. The experimental results show that the improved model demonstrates exceptional small object detection performance while maintaining a compact size.

Key words: unmanned aerial vehicle(UAV), small object detection, attention mechanism, lightweight, YOLOv11