计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (22): 235-244.DOI: 10.3778/j.issn.1002-8331.2503-0108

• 图形图像处理 • 上一篇    下一篇

基于特征融合增强的低光照目标检测算法

陈谢发,李敏,赵晶钰,何玉杰,杨爱涛   

  1. 火箭军工程大学 作战保障学院,西安 710025
  • 出版日期:2025-11-15 发布日期:2025-11-14

Low Light Target Detection Algorithm Based on Feature Fusion Enhancement

CHEN Xiefa, LI Min, ZHAO Jingyu, HE Yujie, YANG Aitao   

  1. China Combat Support Academy, Rocket Force University of Engineering, Xi’an 710025, China
  • Online:2025-11-15 Published:2025-11-14

摘要: 针对可见光图像目标在低光照等不良条件下特征不足的问题,提出了一种融合可见光图像和红外图像以增强目标特征的目标检测算法。该算法以YOLOv11n为基线算法,通过构建双分支的图像多层级特征提取及融合网络,提取目标可见光图像、红外图像的浅层特征和深层特征,按照特征级融合的方法实现同层级的特征融合;引入了语义与细节注入模块,融合可见光图像、红外图像的不同尺度特征,实现两种图像的目标特征信息优势互补,提高了低光照条件下目标检测性能。在M3FD、LLVIP和FLIR-aligned数据集上对所提算法进行验证,实验结果表明,较基线算法分别检测可见光图像和红外图像,该算法在M3FD数据集上,mAP@0.5分别提升了10.2和12.4个百分点,mAP@0.5:0.95分别提升了7.1和6.0个百分点;在LLVIP数据集上,mAP@0.5分别提升了4.8和0.3个百分点,mAP@0.5:0.95分别提升了12.8和1.8个百分点;在FLIR-aligned数据集上,mAP@0.5分别提升了11.3和3.5个百分点,mAP@0.5:0.95分别提升了8.2和2.0个百分点。该算法对比其他两种基于Transformer的图像融合目标检测算法,总体检测性能更高,证明了该算法的先进性和有效性。

关键词: 低光照目标, 特征级融合, 可见光图像, 红外图像, YOLOv11n

Abstract: A target detection algorithm that combines visible light images and infrared images to enhance target features is proposed to address the problem of insufficient features of visible light image targets under adverse conditions such as low light. This algorithm uses YOLOv11n as the baseline algorithm, and constructs a dual branch image multi-level feature extraction and fusion network to extract shallow and deep features of the target visible light image and infrared image. The feature fusion at the same level is achieved according to the feature level fusion method. Semantic and detail injection modules are introduced to integrate the different scale features of visible light images and infrared images, achieving complementary advantages of target feature information between the two images, and improving the performance of target detection under low light conditions. The proposed algorithm is validated on the M3FD, LLVIP and FLIR aligned datasets, and the experimental results show that compared to the baseline algorithm for detecting visible light images and infrared images, the algorithm is effective on the M3FD dataset, mAP@0.5 is improved by 10.2 and 12.4 percentage points respectively, mAP@0.5:0.95 is improved by 7.1 and 6.0 percentage points respectively; On the LLVIP dataset, mAP@0.5 is improved by 4.8 and 0.3 percentage points respectively, mAP@0.5:0.95 is improved by 12.8 and 1.8 percentage points respectively; On the FLIR aligned dataset, mAP@0.5 is improved by 11.3 and 3.5 percentage points respectively, mAP@0.5:0.95 is improved by 8.2 and 2.0 percentage points respectively. Compared with other two Transformer based image fusion target detection algorithms, this algorithm has higher overall detection performance, which proves the progressiveness and effectiveness of the proposed algorithm.

Key words: low light target, feature level fusion, visible light image, infrared image, YOLOv11n