[1] 李娟. 基于机器学习的PCB缺陷检测与分类方法研究[J]. 印制电路信息, 2024, 32(3): 57-59.
LI J. Research on PCB defect detection and classification based on machine learning[J]. Printed Circuit Information, 2024, 32(3): 57-59.
[2] 程立英, 张文雅, 程强, 等. 基于深度学习的PCB缺陷检测技术[J]. 沈阳师范大学学报(自然科学版), 2024, 42(2): 151-156.
CHENG L Y, ZHANG W Y, CHENG Q, et al. PCB defect detection technology based on deep learning[J]. Journal of Shenyang Normal University (Natural Science Edition), 2024, 42(2): 151-156.
[3] 瞿栋, 汪鹏宇, 黄允, 等. 基于卷积神经网络的PCB缺陷图像识别[J]. 计量与测量技术, 2021, 48(8): 21-23.
QU D, WANG P Y, HUANG Y, et al. Image recognition of PCB defects based on convolutional neural network PCB defect image recognition based on convolutional neural network[J]. Metrology & Measurement Technique, 2021, 48(8): 21-23.
[4] BETTI SORBELLI F, PALAZZETTI L, PINOTTI C M. YOLO-based detection of Halyomorpha halys in orchards using RGB cameras and drones[J]. Computers and Electronics in Agriculture, 2023, 213: 108228.
[5] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[6] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448.
[7] 耿振宇. 基于Faster R-CNN的PCB表面缺陷检测[J]. 科学技术创新, 2021(11): 86-87.
GENG Z Y. PCB surface defect detection based on Faster R-CNN[J]. Scientific and Technological Innovation, 2021(11): 86-87.
[8] 程霖, 张涛, 葛平淑, 等. 基于改进YOLOv5的PCB裸板缺陷检测[J]. 大连民族大学学报, 2023, 25(5): 403-407.
CHENG L, ZHANG T, GE P S, et al. PCB bare board defect detection based on improved YOLOv5[J]. Journal of Dalian Minzu University, 2023, 25(5): 403-407.
[9] 严舒, 郭颖, 黄骏. FCM-YOLO: 一种基于特征增强和多尺度融合的PCB缺陷检测方法[J]. 控制与决策, 2024, 39(10): 3181-3189.
YAN S, GUO Y, HUANG J. FCM-YOLO: a PCB defect detection method based on feature enhancement and multi-scale fusion[J]. Control and Decision, 2024, 39(10): 3181-3189.
[10] 张旭, 陈慈发, 董方敏. 基于改进YOLOv7的PCB缺陷检测算法[J]. 计算机工程, 2024, 50(12): 318-328.
ZHANG X, CHEN C F, DONG F M. PCB defect detection algorithm based on improved YOLOv7[J]. Computer Engineering, 2024, 50(12): 318-328.
[11] YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions[J]. arXiv:1511.07122, 2015.
[12] HU S, GAO F, ZHOU X W, et al. Hybrid convolutional and attention network for hyperspectral image denoising[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 5504005.
[13] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[14] MA N, SU Y X, YANG L X, et al. Wheat seed detection and counting method based on improved YOLOv8 model[J]. Sensors, 2024, 24(5): 1654.
[15] SINGH G, STEFENON S F, YOW K C. Interpretable visual transmission lines inspections using pseudo-prototypical part network[J]. Machine Vision and Applications, 2023, 34(3): 41.
[16] LOU H T, DUAN X H, GUO J M, et al. DC-YOLOv8: small-size object detection algorithm based on camera sensor[J]. Electronics, 2023, 12(10): 2323.
[17] 党张敏, 喻崇仁, 殷双飞, 等. 基于CLIP与注意力机制的跨模态哈希检索算法[J]. 计算机工程与设计, 2024, 45(3): 852-858.
DANG Z M, YU C R, YIN S F, et al. Cross modal hash retrieval algorithm based on CLIP and attention mechanism[J]. Computer Engineering and Design, 2024, 45(3): 852-858.
[18] LI S C, HUANG H P, MENG X Y, et al. A glove-wearing detection algorithm based on improved YOLOv8[J]. Sensors, 2023, 23(24): 9906.
[19] OUYANG W, LUO P, ZENG X, et al. DeepID-Net: multi-stage and deformable deep convolutional neural networks for object detection[J]. arXiv:1409.3505, 2014.
[20] WANG C, HE W, NIE Y, et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism[C]//Advances in Neural Information Processing Systems, 2024.
[21] HU D A, YU M, WU X Y, et al. DGW-YOLOv8: a small insulator target detection algorithm based on deformable attention backbone and WIoU loss function[J]. IET Image Processing, 2024, 18(4): 1096-1108.
[22] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 658-666. |