计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (18): 61-77.DOI: 10.3778/j.issn.1002-8331.2410-0450

• 热点与综述 • 上一篇    下一篇

基于深度学习的皮肤病分类研究进展

韩佩宏,魏德健,李传莉,姜良,曹慧   

  1. 1.山东中医药大学 医学信息工程学院,济南 250355
    2.青岛大学 附属妇女儿童医院,山东 青岛 266034
  • 出版日期:2025-09-15 发布日期:2025-09-15

Research Progress on Skin Disease Classification Based on Deep Learning

HAN Peihong, WEI Dejian, LI Chuanli, JIANG Liang, CAO Hui   

  1. 1.School of Medical and Informational Engineering, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
    2.Women and Children??s Hospital, Qingdao University, Qingdao, Shandong 266034, China
  • Online:2025-09-15 Published:2025-09-15

摘要: 皮肤是人体最大的器官,因参与多种生理活动导致发病率较高。皮肤病的准确诊断对患者健康至关重要,然而传统诊断方法却存在主观性强和效率低下等问题。近年来,深度学习技术的迅猛发展为皮肤病分类提供了新的解决方案。系统性地回顾了基于深度学习的皮肤病分类研究进展,总结了近年来皮肤病诊断常用数据集,进而深入探讨了卷积神经网络(convolutional neural network,CNN)和Transformer等主流算法在皮肤病分类中的应用,并特别关注了综合算法的研究进展,此外还进行了典型方法的性能对比分析,总结了当前研究方法存在的各种挑战以及未来研究方向,为后续的发展提供启示和指导。

关键词: 皮肤病分类, 深度学习, 医学图像分析, 模型对比, 智能诊断, 皮肤图像数据集

Abstract: The skin is the largest organ of the human body and has a high incidence rate due to its involvement in various physiological activities. Accurate diagnosis of skin diseases is crucial for patient health, however, traditional diagnostic methods suffer from subjectivity and inefficiency. In recent years, the rapid development of deep learning technologies has provided new solutions for skin disease classification. This paper systematically reviews the progress of deep learning-based skin disease classification research. It summarizes the commonly used datasets for skin disease diagnosis in recent years, then delves into the applications of mainstream algorithms such as convolutional neural networks (CNN) and Transformers in skin disease classification, with a particular focus on the research progress of hybrid algorithms. Additionally, a performance comparison of typical methods is presented. Finally, the paper summarizes the challenges in current research methods and outlines future research directions, providing insights and guidance for subsequent developments.

Key words: skin disease classification, deep learning, medical image analysis, model comparison, intelligent diagnosis, skin image datasets