
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (18): 61-77.DOI: 10.3778/j.issn.1002-8331.2410-0450
韩佩宏,魏德健,李传莉,姜良,曹慧
出版日期:2025-09-15
发布日期:2025-09-15
HAN Peihong, WEI Dejian, LI Chuanli, JIANG Liang, CAO Hui
Online:2025-09-15
Published:2025-09-15
摘要: 皮肤是人体最大的器官,因参与多种生理活动导致发病率较高。皮肤病的准确诊断对患者健康至关重要,然而传统诊断方法却存在主观性强和效率低下等问题。近年来,深度学习技术的迅猛发展为皮肤病分类提供了新的解决方案。系统性地回顾了基于深度学习的皮肤病分类研究进展,总结了近年来皮肤病诊断常用数据集,进而深入探讨了卷积神经网络(convolutional neural network,CNN)和Transformer等主流算法在皮肤病分类中的应用,并特别关注了综合算法的研究进展,此外还进行了典型方法的性能对比分析,总结了当前研究方法存在的各种挑战以及未来研究方向,为后续的发展提供启示和指导。
韩佩宏, 魏德健, 李传莉, 姜良, 曹慧. 基于深度学习的皮肤病分类研究进展[J]. 计算机工程与应用, 2025, 61(18): 61-77.
HAN Peihong, WEI Dejian, LI Chuanli, JIANG Liang, CAO Hui. Research Progress on Skin Disease Classification Based on Deep Learning[J]. Computer Engineering and Applications, 2025, 61(18): 61-77.
| [1] HAMEED N, RUSKIN A, ABU HASSAN K, et al. A comprehensive survey on image-based computer aided diagnosis systems for skin cancer[C]//Proceedings of the 2016 10th International Conference on Software, Knowledge, Information Management & Applications. Piscataway: IEEE, 2016: 205-214. [2] HAMEED N, SHABUT A, HOSSAIN M A. A computer-aided diagnosis system for classifying prominent skin lesions using machine learning[C]//Proceedings of the 2018 10th Computer Science and Electronic Engineering. Piscataway: IEEE, 2018: 186-191. [3] TSCHANDL P, CODELLA N, AKAY B N, et al. Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study[J]. The Lancet Oncology, 2019, 20(7): 938-947. [4] RODRIGUES M, EZZEDINE K, HAMZAVI I, et al. New discoveries in the pathogenesis and classification of vitiligo[J]. Journal of the American Academy of Dermatology, 2017, 77(1): 1-13. [5] SINGH M, KOTNIS A, JADEJA S D, et al. Cytokines: the Yin and Yang of vitiligo pathogenesis[J]. Expert Review of Clinical Immunology, 2019, 15(2): 177-188. [6] BURLANDO M, MURACCHIOLI A, COZZANI E, et al. Psoriasis, vitiligo, and biologic therapy: case report and narrative review[J]. Case Reports in Dermatology, 2021, 13(2): 372-378. [7] LUCIERI A, BAJWA M N, BRAUN S A, et al. ExAID: a multimodal explanation framework for computer-aided diagnosis of skin lesions[J]. Computer Methods and Programs in Biomedicine, 2022, 215: 106620. [8] WAN L, CHEN J B, WU H, et al. Deep learning for inflammatory diseases classification based on reflectance confocal microscopy[J]. Journal of the American Academy of Dermatology, 2023, 88(5): e283-e284. [9] SARGEN M R, LUK K M, STOFF B K, et al. Diagnostic accuracy of whole slide imaging for cutaneous, soft tissue, and melanoma sentinel lymph node biopsies with and without immunohistochemistry[J]. Journal of Cutaneous Pathology, 2018, 45(8): 597-602. [10] YANG J C, JIAO Y B, XIONG N X, et al. Fast face gender recognition by using local ternary pattern and extreme learning machine[J]. Ksii Transactions on Internet and Information Systems, 2013, 7(7): 1705-1720. [11] 王慧, 戚倩倩, 李雪, 等. 皮肤肿瘤图像自动分类的研究进展[J]. 计算机工程与应用, 2022, 58(16): 31-48. WANG H, QI Q Q, LI X, et al. Research progress in automatic classification of skin lesions image[J]. Computer Engineering and Applications, 2022, 58(16): 31-48. [12] ZHANG B, ZHOU X, LUO Y C, et al. Opportunities and challenges: classification of skin disease based on deep learning[J]. Chinese Journal of Mechanical Engineering, 2021, 34(1): 112. [13] NANCY V A O, PRABHAVATHY P, ARYA M S. Role of artificial intelligence and deep learning in skin disease prediction: a systematic review and meta-analysis[J]. Annals of Data Science, 2024, 11(6): 2109-2139. [14] LI H F, PAN Y N, ZHAO J, et al. Skin disease diagnosis with deep learning: a review[J]. Neurocomputing, 2021, 464: 364-393. [15] LYAKHOVA U A, LYAKHOV P A. Systematic review of approaches to detection and classification of skin cancer using artificial intelligence: development and prospects[J]. Computers in Biology and Medicine, 2024, 178: 108742. [16] RIAZ S, NAEEM A, MALIK H, et al. Federated and transfer learning methods for the classification of melanoma and nonmelanoma skin cancers: a prospective study[J]. Sensors, 2023, 23(20): 8457. [17] RAY A, SARKAR S, SCHWENKER F, et al. Decoding skin cancer classification: perspectives, insights, and advances through researchers’lens[J]. Scientific Reports, 2024, 14(1): 30542. [18] GUTMAN D, CODELLA N C F, CELEBI E, et al. Skin lesion analysis toward melanoma detection: a challenge at the international symposium on biomedical imaging (ISBI) 2016, hosted by the international skin imaging collaboration (ISIC)[J]. arXiv:1605.01397, 2016. [19] CODELLA N C F, GUTMAN D, CELEBI M E, et al. Skin lesion analysis toward melanoma detection: a challenge at the 2017 International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC)[C]//Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging. Piscataway: IEEE, 2018: 168-172. [20] TSCHANDL P, ROSENDAHL C, KITTLER H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions[J]. Scientific Data, 2018, 5: 180161. [21] COMBALIA M, CODELLA N C F, ROTEMBERG V, et al. BCN20000: dermoscopic lesions in the wild[J]. arXiv:1908. 02288, 2019. [22] ROTEMBERG V, KURTANSKY N, BETZ-STABLEIN B, et al. A patient-centric dataset of images and metadata for identifying melanomas using clinical context[J]. Scientific Data, 2021, 8: 34. [23] BAJWA M N, MUTA K, MALIK M I, et al. Computer-aided diagnosis of skin diseases using deep neural networks[J]. Applied Sciences, 2020, 10(7): 2488. [24] BALLERINI L, FISHER R B, ALDRIDGE B, et al. A color and texture based hierarchical K-NN approach to the classification of non-melanoma skin lesions[M]//Color medical image analysis. Dordrecht: Springer Netherlands, 2013: 63-86. [25] GIOTIS I, MOLDERS N, LAND S, et al. MED-NODE: a computer-assisted melanoma diagnosis system using non-dermoscopic images[J]. Expert Systems with Applications, 2015, 42(19): 6578-6585. [26] MENDON?A T, FERREIRA P M, MARQUES J S, et al. PH2-A dermoscopic image database for research and benchmarking[C]//Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway: IEEE, 2013: 5437-5440. [27] KAWAHARA J, DANESHVAR S, ARGENZIANO G, et al. Seven-point checklist and skin lesion classification using multitask multimodal neural nets[J]. IEEE Journal of Biomedical and Health Informatics, 2018, 23(2): 538-546. [28] HAN S S. SNU dataset+Quiz[DB/OL]. (2021-08-16)[2021-11-03]. https://doi.org/10.6084/m9.figshare.6454973.v11. [29] HAN S S, KIM M S, LIM W, et al. Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm[J]. Journal of Investigative Dermatology, 2018, 138(7): 1529-1538. [30] XIE B, HE X Y, ZHAO S, et al. XiangyaDerm: a clinical image dataset of Asian race for skin disease aided diagnosis[M]//Large-scale annotation of biomedical data and expert label synthesis and hardware aware learning for medical imaging and computer assisted intervention. Cham: Springer International Publishing, 2019: 22-31. [31] ZHANG J P, ZHONG F, HE K Q, et al. Recent advancements and perspectives in the diagnosis of skin diseases using machine learning and deep learning: a review[J]. Diagnostics, 2023, 13(23): 3506. [32] 王师玮, 陈俊, 易才键. 基于改进ResNet50的皮肤病变图像分类[J]. 软件工程, 2023, 26(6): 50-54. WANG S W, CHEN J, YI C J. Image classification of skin lesions based on improved ResNet50[J]. Software Engineering, 2023, 26(6): 50-54. [33] ESKANDARI A, SHARBATDAR M. Efficient diagnosis of psoriasis and lichen planus cutaneous diseases using deep learning approach[J]. Scientific Reports, 2024, 14: 9715. [34] KOUSIS I, PERIKOS I, HATZILYGEROUDIS I, et al. Deep learning methods for accurate skin cancer recognition and mobile application[J]. Electronics, 2022, 11(9): 1294. [35] ALI JINNA MATHINA KANI M, PARVATHY M S, MAAJITHA BANU S, et al. Classification of skin lesion images using modified Inception V3 model with transfer learning and augmentation techniques[J]. Journal of Intelligent & Fuzzy Systems, 2023, 44(3): 4627-4641. [36] KARTHIK R, VAICHOLE T S, KULKARNI S K, et al. Eff2Net: an efficient channel attention-based convolutional neural network for skin disease classification[J]. Biomedical Signal Processing and Control, 2022, 73: 103406. [37] VENUGOPAL V, RAJ N I, NATH M K, et al. A deep neural network using modified EfficientNet for skin cancer detection in dermoscopic images[J]. Decision Analytics Journal, 2023, 8: 100278. [38] MADURANGA M, NANDASENA D. Mobile-based skin disease diagnosis system using convolutional neural networks (CNN)[J]. International Journal of Image, Graphics and Signal Processing, 2022, 14(3): 47-57. [39] SAHIN V H, OZTEL I, YOLCU OZTEL G. Human monkeypox classification from skin lesion images with deep pre-trained network using mobile application[J]. Journal of Medical Systems, 2022, 46(11): 79. [40] KUMAR L, SINGH K U, SHARMA B K, et al. Deep learning and crow search to detect skin cancer in dermoscopic images[C]//Proceedings of the 2024 IEEE International Conference on Contemporary Computing and Communications. Piscataway: IEEE, 2024: 1-7. [41] RADHIKA V, CHANDANA B S. MSCDNet-based multi-class classification of skin cancer using dermoscopy images[J]. PeerJ Computer Science, 2023, 9: e1520. [42] ALI M S, MIAH M S, HAQUE J, et al. An enhanced technique of skin cancer classification using deep convolutional neural network with transfer learning models[J]. Machine Learning with Applications, 2021, 5: 100036. [43] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017. [44] ARKIN E, YADIKAR N, MUHTAR Y, et al. A survey of object detection based on CNN and Transformer[C]//Proceedings of the 2021 IEEE 2nd International Conference on Pattern Recognition and Machine Learning. Piscataway: IEEE, 2021: 99-108. [45] HIMEL G M S, ISLAM M M, AL-AFF K A, et al. Skin cancer segmentation and classification using vision Transformer for automatic analysis in dermatoscopy-based noninvasive digital system[J]. International Journal of Biomedical Imaging, 2024, 2024(1): 3022192. [46] XIN C, LIU Z F, ZHAO K Y, et al. An improved transformer network for skin cancer classification[J]. Computers in Biology and Medicine, 2022, 149: 105939. [47] FLOSDORF C, ENGELKER J, KELLER I, et al. Skin cancer detection utilizing deep learning: classification of skin lesion images using a vision Transformer[J]. arXiv:2407. 18554, 2024. [48] AHMAD I, AMIN J, IKRAMULLAH LALI M, et al. A novel Deeplabv3+ and vision-based transformer model for segmentation and classification of skin lesions[J]. Biomedical Signal Processing and Control, 2024, 92: 106084. [49] REN Y G, XU W Q, MAO Y X, et al. Few-shot learning for dermatological conditions with lesion area aware swin Transformer[J]. International Journal of Imaging Systems and Technology, 2023, 33(5): 1549-1560. [50] TANG K, SU J, CHEN R H, et al. SkinSwinViT: a lightweight Transformer-based method for multiclass skin lesion classification with enhanced generalization capabilities[J]. Applied Sciences, 2024, 14(10): 4005. [51] XIE J S, WU Z Z, ZHU R J, et al. Melanoma detection based on swin Transformer and SimAM[C]//Proceedings of the 2021 IEEE 5th Information Technology, Networking, Electronic and Automation Control Conference. Piscataway: IEEE, 2021: 1517-1521. [52] SHEHZAD K, TAN Z H, SHOUKAT S, et al. A deep-ensemble-learning-based approach for skin cancer diagnosis[J]. Electronics, 2023, 12(6): 1342. [53] KRISHNA G S, SUPRIYA K, SORGILE M. LesionAid: vision Transformers-based skin lesion generation and classification[J]. arXiv:2302.01104, 2023. [54] PACAL I, ALAFTEKIN M, ZENGUL F D. Enhancing skin cancer diagnosis using swin Transformer with hybrid shifted window-based multi-head self-attention and SwiGLU-based MLP[J]. Journal of Imaging Informatics in Medicine, 2024, 37(6): 3174-3192. [55] ANJALI T, ABHISHEK S, REMYA S. A novel framework for rosacea detection using swin Transformers and explainable artificial intelligence[J]. Alexandria Engineering Journal, 2025, 118: 36-58. [56] PARADDY S, VIRUPAKSHAPPA. Addressing challenges in skin cancer diagnosis: a convolutional swin Transformer approach[J]. Journal of Imaging Informatics in Medicine, 2025, 38(3): 1755-1775. [57] DWIVEDI T, CHAURASIA B K, SHUKLA M M. Lightweight vision image transformer (LViT) model for skin cancer disease classification[J]. International Journal of System Assurance Engineering and Management, 2024, 15(10): 5030-5055. [58] SADIK R, MAJUMDER A, BISWAS A A, et al. An in-depth analysis of convolutional neural network architectures with transfer learning for skin disease diagnosis[J]. Healthcare Analytics, 2023, 3: 100143. [59] SWETHA R N, SHRIVASTAVA V K, PARVATHI K. Multiclass skin lesion classification using image augmentation technique and transfer learning models[J]. International Journal of Intelligent Unmanned Systems, 2024, 12(2): 220-228. [60] 赵宸, 帅仁俊, 马力, 等. 基于Self-Attention StyleGAN的皮肤癌图像生成与分类[J]. 计算机工程与应用, 2022, 58(18): 111-121. ZHAO C, SHUAI R J, MA L, et al. Generation and classification of skin cancer images based on Self-Attention StyleGAN[J]. Computer Engineering and Applications, 2022, 58(18): 111-121. [61] AHMAD B, SUN J, PALADE V, et al. Improving skin cancer classification using heavy-tailed student T-distribution in generative adversarial networks (TED-GAN)[J]. Diagnostics, 2021, 11(11): 2147. [62] TEODORO A A M, SILVA D H, ROSA R L, et al. A skin cancer classification approach using GAN and RoI-based attention mechanism[J]. Journal of Signal Processing Systems, 2023, 95(2): 211-224. [63] ALSAIDI M, JAN M T, ALTAHER A, et al. Tackling the class imbalanced dermoscopic image classification using data augmentation and GAN[J]. Multimedia Tools and Applications, 2024, 83(16): 49121-49147. [64] SU Q C, HAMED H N A, ISA M A, et al. A GAN-based data augmentation method for imbalanced multi-class skin lesion classification[J]. IEEE Access, 2024, 12: 16498-16513. [65] BATISTA L G, BUGATTI P H, SAITO P T M. Classification of skin lesion through active learning strategies[J]. Computer Methods and Programs in Biomedicine, 2022, 226: 107122. [66] DENG Z P, YANG Y Q, SUZUKI K. Federated active learning framework for efficient annotation strategy in skin-lesion classification[J]. Journal of Investigative Dermatology, 2025, 145(2): 303-311. [67] MANDAL S, GHOSH S, JANA N D, et al. Active learning with particle swarm optimization for enhanced skin cancer classification utilizing deep CNN models[J]. Journal of Imaging Informatics in Medicine, 2024:1-18. [68] 杨怡光, 王钧程, 谢凤英, 等. 皮肤疾病辅助诊断系统中的数据与方法[J]. 协和医学杂志, 2023, 14(1): 168-176. YANG Y G, WANG J C, XIE F Y, et al. Data and methods in computer-aided diagnosis systems of skin diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(1): 168-176. [69] TANG P, YAN X T, NAN Y, et al. FusionM4Net: a multi-stage multi-modal learning algorithm for multi-label skin lesion classification[J]. Medical Image Analysis, 2022, 76: 102307. [70] ZHANG Y J, HU Y F, LI K, et al. Exploring the influence of Transformer-based multimodal modeling on clinicians’diagnosis of skin diseases: a quantitative analysis[J]. Digital Health, 2024, 10: 20552076241257087. [71] TANG P, YAN X T, NAN Y, et al. Joint-individual fusion structure with fusion attention module for multi-modal skin cancer classification[J]. Pattern Recognition, 2024, 154: 110604. [72] MOHAMMED H M A, OMEROGLU A N, ORAL E A, et al. ISAFusionNet: involution and soft attention based deep multi-modal fusion network for multi-label skin lesion classification[J]. Computers and Electrical Engineering, 2025, 122: 109966. [73] ZHOU J X, HE X N, SUN L Y, et al. Pre-trained multimodal large language model enhances dermatological diagnosis using SkinGPT-4[J]. Nature Communications, 2024, 15: 5649. [74] RAZIA SULTHANA A, CHAMOLA V, HUSSAIN Z, et al. A novel end-to-end deep convolutional neural network based skin lesion classification framework[J]. Expert Systems with Applications, 2024, 246: 123056. [75] ARUMUGAM R V, SARAVANAN S. Automated multi-class skin cancer classification using white shark optimizer with ensemble learning classifier on dermoscopy images[J]. Multimedia Tools and Applications, 2025, 84(8): 4857-4879. [76] TABAGHSAR B J, TAVOLI R, TOOSI M M A. Presenting a three layer stacking ensemble classifier of deep learning and machine learning for skin cancer classification[J]. Multimedia Tools and Applications, 2025, 84(9): 6135-6156. [77] 王泽彤, 张俊华, 王肖. SFA-ConvNeXt: 逐级聚合多尺度ConvNeXt的皮肤镜图像分类[J]. 计算机工程与应用, 2024, 60(20): 244-253. WANG Z T, ZHANG J H, WANG X. SFA-ConvNeXt: dermoscopic image classification for stepwise aggregation of multiscale ConvNeXt[J]. Computer Engineering and Applications, 2024, 60(20): 244-253. [78] HAGGERTY H, CHANDRA R. Self-supervised learning for skin cancer diagnosis with limited training data[J]. arXiv:2401.00692, 2024. [79] ?ZDEMIR Z, KELES H Y, TANRI?VER ? ?. Meta-transfer derm-diagnosis: exploring few-shot learning and transfer learning for skin disease classification in long-tail distribution[J]. arXiv:2404.16814, 2024. [80] CHEN T L, LIU Q, YANG J. Few-shot classification with multiscale feature fusion for clinical skin disease diagnosis[J]. Clinical, Cosmetic and Investigational Dermatology, 2024, 17: 1007-1026. [81] ASIF S, QURRAT-UL-AIN, KHAN S U R, et al. SKINC-NET: an efficient lightweight deep learning model for multiclass skin lesion classification in dermoscopic images[J]. Multimedia Tools and Applications, 2025, 84(13): 12531-12557. [82] MIDASALA V D, PRABHAKAR B, KRISHNA CHAITANYA J, et al. MFEUsLNet: skin cancer detection and classification using integrated AI with multilevel feature extraction-based unsupervised learning[J]. Engineering Science and Technology, an International Journal, 2024, 51: 101632. [83] CINO L, DISTANTE C, MARTELLA A, et al. Skin lesion classification through test time augmentation and explainable artificial intelligence[J]. Journal of Imaging, 2025, 11(1): 15. [84] KAMAL S, OATES T. MedGrad E-CLIP: enhancing trust and transparency in AI-driven skin lesion diagnosis[J]. arXiv:2501.06887, 2025. [85] SAYED G I, SOLIMAN M M, HASSANIEN A E. A novel melanoma prediction model for imbalanced data using optimized SqueezeNet by bald eagle search optimization[J]. Computers in Biology and Medicine, 2021, 136: 104712. |
| [1] | 李淑慧, 蔡伟, 王鑫, 高蔚洁, 狄星雨. 深度学习框架下的红外与可见光图像融合方法综述[J]. 计算机工程与应用, 2025, 61(9): 25-40. |
| [2] | 陈浞, 刘东青, 唐平华, 黄燕, 张文霞, 贾岩, 程海峰. 面向目标检测的物理对抗攻击研究进展[J]. 计算机工程与应用, 2025, 61(9): 80-101. |
| [3] | 王婧, 李云霞. NS-FEDformer模型对股票收益率的预测研究[J]. 计算机工程与应用, 2025, 61(9): 334-342. |
| [4] | 周佳妮, 刘春雨, 刘家鹏. 融合通道与多头注意力的股价趋势预测模型[J]. 计算机工程与应用, 2025, 61(8): 324-338. |
| [5] | 甄彤, 张威振, 李智慧. 遥感影像中种植作物结构分类方法综述[J]. 计算机工程与应用, 2025, 61(8): 35-48. |
| [6] | 李仝伟, 仇大伟, 刘静, 逯英航. 基于RGB与骨骼数据的人体行为识别综述[J]. 计算机工程与应用, 2025, 61(8): 62-82. |
| [7] | 温浩, 杨洋. 融合ERNIE与知识增强的临床短文本分类研究[J]. 计算机工程与应用, 2025, 61(8): 108-116. |
| [8] | 王燕, 卢鹏屹, 他雪. 结合特征融合注意力的规范化卷积图像去雾网络[J]. 计算机工程与应用, 2025, 61(8): 226-238. |
| [9] | 邢素霞, 李珂娴, 方俊泽, 郭正, 赵士杭. 深度学习下的医学图像分割综述[J]. 计算机工程与应用, 2025, 61(7): 25-41. |
| [10] | 陈宇, 权冀川. 伪装目标检测:发展与挑战[J]. 计算机工程与应用, 2025, 61(7): 42-60. |
| [11] | 翟慧英, 郝汉, 李均利, 占志峰. 铁路设施无人机自主巡检算法研究综述[J]. 计算机工程与应用, 2025, 61(7): 61-80. |
| [12] | 韩佰轩, 彭月平, 郝鹤翔, 叶泽聪. DMU-YOLO:机载视觉的多类异常行为检测算法[J]. 计算机工程与应用, 2025, 61(7): 128-140. |
| [13] | 史昕, 王浩泽, 纪艺, 马峻岩. 融合时空特征的多模态车辆轨迹预测方法[J]. 计算机工程与应用, 2025, 61(7): 325-333. |
| [14] | 王文举, 唐邦, 顾泽骅, 王森. 深度学习的多视角三维重建技术综述[J]. 计算机工程与应用, 2025, 61(6): 22-35. |
| [15] | 孙宇, 刘川, 周扬. 深度学习在知识图谱构建及推理中的应用[J]. 计算机工程与应用, 2025, 61(6): 36-52. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||