
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (14): 65-87.DOI: 10.3778/j.issn.1002-8331.2410-0291
史晓国,云静,张钰莹,刘雪颖
出版日期:2025-07-15
发布日期:2025-07-15
SHI Xiaoguo, YUN Jing, ZHANG Yuying, LIU Xueying
Online:2025-07-15
Published:2025-07-15
摘要: 步态识别是一种生物识别技术,通过摄像头对人的行走方式分析来进行身份识别,具有远距离、难以欺骗和在低分辨率下也可以工作的优点。近年来,随着深度学习技术的迅速发展,步态识别技术在与深度学习技术的融合中得到了显著的发展,特别是卷积神经网络、循环神经网络、自编码器和生成对抗网络在步态识别中的应用大大提高了步态识别的效率与准确率。综述了步态识别技术的发展,包括步态识别的独特特征、发展历史以及近年来的研究文献。列出了不同的数据集并对其特点进行了讨论,提出了一种对步态识别技术的分类方法,包括基于身体表征和基于模板的方法。探讨了步态识别在一些场景中的应用以及存在的一些问题,包括容易丢失时间和细粒度的空间信息等缺陷,并对步态识别的未来发展方向进行了进一步的探讨。
史晓国, 云静, 张钰莹, 刘雪颖. 步态识别研究综述[J]. 计算机工程与应用, 2025, 61(14): 65-87.
SHI Xiaoguo, YUN Jing, ZHANG Yuying, LIU Xueying. Review of Gait Recognition Research[J]. Computer Engineering and Applications, 2025, 61(14): 65-87.
| [1] SHARIF M I, MEHMOOD M, SHARIF M I, et al. Human gait recognition using deep learning: a comprehensive review[J]. arXiv:2309.10144, 2023. [2] MAMIEVA D, ABDUSALOMOV A B, MUKHIDDINOV M, et al. Improved face detection method via learning small faces on hard images based on a deep learning approach[J]. Sensors (Basel), 2023, 23(1): 502. [3] NGUYEN K, PROEN?A H, ALONSO-FERNANDEZ F. Deep learning for iris recognition: a survey[J]. ACM Computing Surveys, 2024, 56(9): 1-35. [4] PRABHAVALKAR R, HORI T, SAINATH T N, et al. End-to-end speech recognition: a survey[J]. ACM Transactions on Audio, Speech, and Language Processing, 2024, 32: 325-351. [5] KAUR H, KUMAR M. Signature identification and verification techniques: state-of-the-art work[J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14(2): 1027-1045. [6] NARAYAN V, AWASTHI S, FATIMA N, et al. Deep learning approaches for human gait recognition: a review[C]//Proceedings of the International Conference on Artificial Intelligence and Smart Communication. Piscataway: IEEE, 2023: 763-768. [7] 陈欣, 杨天奇. 不受服饰携带物影响的步态识别方法[J]. 计算机工程与应用, 2016, 52(5): 141-146. CHEN X, YANG T Q. Gait recognition method without influence of dress and carrying[J]. Computer Engineering and Applications, 2016, 52(5): 141-146. [8] KHERA P, KUMAR N, DAS R. Digital-health monitoring system for healthy aging using gait biomarkers[J]. IEEE Sensors Journal, 2023, 23(19): 23804-23811. [9] HABIB Z, ALI MUGHAL M, KHAN M A, et al. WiFOG: integrating deep learning and hybrid feature selection for accurate freezing of gait detection[J]. Alexandria Engineering Journal, 2024, 86: 481-493. [10] ETEMAD A S, ARYA A. Expert-driven perceptual features for modeling style and affect in human motion[J]. IEEE Transactions on Human-Machine Systems, 2016, 46(4): 534-545. [11] ETEMAD A S, ARYA A. Correlation-optimized time warping for motion[J]. The Visual Computer, 2015, 31(12): 1569-1586. [12] ANTWI-AFARI M F, LI H, ANWER S, et al. Quantifying workers’ gait patterns to identify safety hazards in construction using a wearable insole pressure system[J]. Safety Science, 2020, 129: 104855. [13] PAPAVASILEIOU I, QIAO Z, ZHANG C Y, et al. GaitCode: gait-based continuous authentication using multimodal learning and wearable sensors[J]. Smart Health, 2021, 19: 100162. [14] MA Y, WEI C H, LONG H. A gait recognition method based on the combination of human body posture and human body contour[J]. Journal of Physics: Conference Series, 2020, 1631(1): 012031. [15] CHAO H, WANG K, HE Y, et al. GaitSet: cross-view gait recognition through utilizing gait as a deep set[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(7): 3467-3478. [16] VERLEKAR T T, SOARES L D, CORREIA P L. Gait recognition in the wild using shadow silhouettes[J]. Image and Vision Computing, 2018, 76: 1-13. [17] FAN C, PENG Y J, CAO C S, et al. GaitPart: temporal part-based model for gait recognition[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 14213-14221. [18] 朱新峰, 宋健. 轻量级图像超分辨率研究综述[J]. 计算机工程与应用, 2024, 60(16): 49-60. ZHU X F, SONG J. Review of research on lightweight image super-resolution[J]. Computer Engineering and Applications, 2024, 60(16): 49-60. [19] 苑玮琦, 滕红艳. 眼睛疲劳程度判定方法研究[J]. 计算机工程与应用, 2013, 49(17): 199-203. YUAN W Q, TENG H Y. Study on method of determining eye fatigue degree[J]. Computer Engineering and Applications, 2013, 49(17): 199-203. [20] XU S, FANG J, HU X, et al. Emotion recognition from gait analyses: current research and future directions[J]. IEEE Transactions on Computational Social Systems, 2022, 11(1): 363-377. [21] WAN C S, WANG L, PHOHA V V. A survey on gait recognition[J]. ACM Computing Surveys, 2018, 51(5): 1-35. [22] DERAWI M. Accelerometer-based gait analysis, a survey[C]//Proceedings of the Norwegian Information Security Conference, 2010: 33-45. [23] SPRAGER S, JURIC M B. Inertial sensor-based gait recognition: a review[J]. Sensors (Basel), 2015, 15(9): 22089-22127. [24] LYU Z, XING X, WANG K, et al. Class energy image analysis for video sensor-based gait recognition: a review[J]. Sensors (Basel), 2015, 15(1): 932-964. [25] BORA N M, MOLKE G V, MUNOT H R. Understanding human gait: a survey of traits for biometrics and biomedical applications[C]//Proceedings of the International Conference on Energy Systems and Applications. Piscataway: IEEE, 2015: 723-728. [26] YANG G L, TAN W, JIN H X, et al. Review wearable sensing system for gait recognition[J]. Cluster Computing, 2019, 22(2): 3021-3029. [27] NAMBIAR A, BERNARDINO A, NASCIMENTO J C. Gait-based person re-identification[J]. ACM Computing Surveys, 2020, 52(2): 1-34. [28] WANG K J, DING X N, XING X L, et al. A survey of multi-view gait recognition[J]. Acta Automatica Sinica, 2019, 45(5): 841-852. [29] MATSUSHITA Y, TRAN D T, YAMAZOE H, et al. Recent use of deep learning techniques in clinical applications based on gait: a survey[J]. Journal of Computational Design and Engineering, 2021, 8(6): 1499-1532. [30] TOPHAM L K, KHAN W, AL-JUMEILY D, et al. Human body pose estimation for gait identification: a comprehensive survey of datasets and models[J]. ACM Computing Surveys, 2023, 55(6): 1-42. [31] ATRUSHI D, ABDULAZEEZ A M. Human gait recognition based on deep learning: a review[J]. Indonesian Journal of Computer Science, 2024, 13(1): 3719. [32] CUNADO D,NIXON M S, CARTER J N. Using gait as a biometric, via phase-weighted magnitude spectra[C]//Proceedings of the 1st International Conference on Audio-and Video-Based Biometric Person Authentication,1997. [33] HAN J, BHANU B. Individual recognition using gait energy image[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(2): 316-322. [34] LIU J Y, ZHENG N N. Gait history image: a novel temporal template for gait recognition[C]//Proceedings of the IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2007: 663-666. [35] LIAO R J, CAO C S, GARCIA E B, et al. Pose-based temporal-spatial network (PTSN) for gait recognition with carrying and clothing variations[C]//Proceedings of the Biometric Recognition. Cham: Springer International Publishing, 2017: 474-483. [36] WU Z, HUANG Y, WANG L, et al. A comprehensive study on cross-view gait based human identification with deep CNNs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(2): 209-226. [37] ZHANG Z Y, TRAN L, YIN X, et al. Gait recognition via disentangled representation learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4705-4714. [38] WANG Y X, DU B W, SHEN Y R, et al. EV-Gait: event-based robust gait recognition using dynamic vision sensors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 6351-6360. [39] CHAO H Q, HE Y W, ZHANG J P, et al. GaitSet: regarding gait as a set for cross-view gait recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 8126-8133. [40] ZHENG J K, LIU X C, LIU W, et al. Gait recognition in the wild with dense 3D representations and A benchmark[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 20196-20205. [41] GAO S, YUN J, ZHAO Y M, et al. Gait-D: skeleton-based gait feature decomposition for gait recognition[J]. IET Computer Vision, 2022, 16(2): 111-125. [42] FAN C, LIANG J H, SHEN C F, et al. OpenGait: revisiting gait recognition toward better practicality[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 9707-9716. [43] YE D Q, FAN C, MA J Z, et al. BigGait: learning gait representation you want by large vision models[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 200-210. [44] GROSS R. The CMU motion of body (MoBo) database[M]. Pittsburgh: Carnegie Mellon University, 2001. [45] CHALIDABHONGSE T, KRUGER V, CHELLAPPA R. The UMD database for human identification at a distance[R]. Maryland: University of Maryland, 2001. [46] WANG L, TAN T N, NING H Z, et al. Silhouette analysis-based gait recognition for human identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12): 1505-1518. [47] NIXON M, CARTER J, SHUTLER J, et al. Experimental plan for automatic gait recognition[R]. Southampton: University of Southampton, 2001. [48] YU S Q, TAN D L, TAN T N. A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition[C]//Proceedings of the 18th International Conference on Pattern Recognition. Piscataway: IEEE, 2006: 441-444. [49] LAL A, NITHYAKANI P. Gait speed based individual recognition model using deep 2-D convolutional neural network[C]//Proceedings of the International Conference on Computer Communication and Informatics. Piscataway: IEEE, 2023: 1-6. [50] SARKAR S, PHILLIPS P J, LIU Z, et al. The humanID gait challenge problem: data sets, performance, and analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(2): 162-177. [51] SHUTLER J D, GRANT M G, NIXON M S, et al. On a large sequence-based human gait database[M]//Applications and science in soft computing. Berlin, Heidelberg: Springer, 2004: 339-346. [52] SANTOS D C F G, SOUZA D O D, PASSOS L A, et al. Gait recognition based on deep learning: a survey[J]. arXiv:2201.03323, 2022. [53] TSUJI A, MAKIHARA Y, YAGI Y. Silhouette transformation based on walking speed for gait identification[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2010: 717-722. [54] HOFMANN M, GEIGER J, BACHMANN S, et al. The TUM gait from audio, image and depth (GAID) database: multimodal recognition of subjects and traits[J]. Journal of Visual Communication and Image Representation, 2014, 25(1): 195-206. [55] IWAMA H, OKUMURA M, MAKIHARA Y, et al. The OU-ISIR gait database comprising the large population dataset and performance evaluation of gait recognition[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(5): 1511-1521. [56] CHANDRA D, ANGGRAENI N D, DIRGANTARA T, et al. Improvement of three-dimensional motion analyzer system for the development of Indonesian gait database[J]. Procedia Manufacturing, 2015, 2: 268-274. [57] DAS D, AGARWAL A, CHATTOPADHYAY P. Gait recognition from occluded sequences in surveillance sites[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2023: 703-719. [58] UDDIN M Z, NGO T T, MAKIHARA Y, et al. The OU-ISIR large population gait database with real-life carried object and its performance evaluation[J]. IPSJ Transactions on Computer Vision and Applications, 2018, 10: 1-11. [59] LóPEZ-FERNáNDEZ D, MADRID-CUEVAS F J, CARMONA-POYATO á, et al. The AVA multi-view dataset for gait recognition[C]//Proceedings of the Second International Workshop on Activity Monitoring by Multiple Distributed Sensing, 2014: 26-39. [60] DELGADO-SANTOS P, TOLOSANA R, GUEST R, et al. M-GaitFormer: mobile biometric gait verification using Transformers[J]. Engineering Applications of Artificial Intelligence, 2023, 125: 106682. [61] ELHARROUSS O, ALMAADEED N, AL-MAADEED S, et al. Gait recognition for person re-identification[J]. The Journal of Supercomputing, 2021, 77(4): 3653-3672. [62] AN W Z, YU S Q, MAKIHARA Y, et al. Performance evaluation of model-based gait on multi-view very large population database with pose sequences[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2020, 2(4): 421-430. [63] ZHU Z, GUO X, YANG T, et al. Gait recognition in the wild: a benchmark[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 14769-14779. [64] SINGH J P, JAIN S, ARORA S, et al. A survey of behavioral biometric gait recognition: current success and future perspectives[J]. Archives of Computational Methods in Engineering, 2021, 28(1): 107-148. [65] LEE T K M, BELKHATIR M, SANEI S. A comprehensive review of past and present vision-based techniques for gait recognition[J]. Multimedia Tools and Applications, 2014, 72(3): 2833-2869. [66] 王开杰, 杨天奇. 基于列质量向量和SVM的步态识别[J]. 计算机工程与应用, 2015, 51(7): 169-173. WANG K J, YANG T Q. Gait recognition method based on column mass vector and support vector machine[J]. Computer Engineering and Applications, 2015, 51(7): 169-173. [67] 鲍文霞, 梁栋. 结合无符号Laplace谱特征的触觉步态识别算法[J]. 计算机工程与应用, 2016, 52(1): 214-218. BAO W X, LIANG D. Algorithm on tactile gait recognition combined with signless Laplace spectrum feature[J]. Computer Engineering and Applications, 2016, 52(1): 214-218. [68] KALE A, RAJAGOPALAN A N, CUNTOOR N, et al. Gait-based recognition of humans using continuous HMMs[C]//Proceedings of the 5th IEEE International Conference on Automatic Face Gesture Recognition. Piscataway: IEEE, 2002: 336-341. [69] COLLINS R T, GROSS R, SHI J B. Silhouette-based human identification from body shape and gait[C]//Proceedings of the 5th IEEE International Conference on Automatic Face Gesture Recognition. Piscataway: IEEE, 2002: 366-371. [70] HAYFRON-ACQUAH J B, NIXON M S, CARTER J N. Automatic gait recognition by symmetry analysis[J]. Pattern Recognition Letters, 2003, 24(13): 2175-2183. [71] BENABDELKADER C, CUTLER R G, DAVIS L S. Gait recognition using image self-similarity[J]. EURASIP Journal on Advances in Signal Processing, 2004, 2004(4): 721765. [72] LIU Z, SARKAR S. Improved gait recognition by gait dynamics normalization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(6): 863-876. [73] IOANNIDIS D, TZOVARAS D, DAMOUSIS I G, et al. Gait recognition using compact feature extraction transforms and depth information[J]. IEEE Transactions on Information Forensics and Security, 2007, 2(3): 623-630. [74] LAM T H W, LEE R S T, ZHANG D. Human gait recognition by the fusion of motion and static spatio-temporal templates[J]. Pattern Recognition, 2007, 40(9): 2563-2573. [75] LU J W, ZHANG E H. Gait recognition for human identification based on ICA and fuzzy SVM through multiple views fusion[J]. Pattern Recognition Letters, 2007, 28(16): 2401-2411. [76] LU H P, PLATANIOTIS K N, VENETSANOPOULOS A N. MPCA: multilinear principal component analysis of tensor objects[J]. IEEE Transactions on Neural Networks, 2008, 19(1): 18-39. [77] WANG J Q, MAKIHARA Y, YAGI Y. Human tracking and segmentation supported by silhouette-based gait recognition[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2008: 1698-1703. [78] BASHIR K, XIANG T, GONG S G. Gait recognition using gait entropy image[C]//Proceedings of the 3rd International Conference on Imaging for Crime Detection and Prevention, 2009: 1-6. [79] MISHRA P, EZRA S. Human gait recognition using bezier curves[J]. International Journal on Computer Science and Engineering, 2011, 3(2): 969-975. [80] LAM T H W, CHEUNG K H, LIU J N K. Gait flow image: a silhouette-based gait representation for human identification[J]. Pattern Recognition, 2011, 44(4): 973-987. [81] CHOUDHURY S D, TJAHJADI T. Silhouette-based gait recognition using Procrustes shape analysis and elliptic Fourier descriptors[J]. Pattern Recognition, 2012, 45(9): 3414-3426. [82] CHOUDHURY S D, TJAHJADI T. Gait recognition based on shape and motion analysis of silhouette contours[J]. Computer Vision and Image Understanding, 2013, 117(12): 1770-1785. [83] LEE C P, TAN A W C, TAN S C. Gait recognition via optimally interpolated deformable contours[J]. Pattern Recognition Letters, 2013, 34(6): 663-669. [84] SABIR A, AL-JAWAD N, JASSIM S. Gait recognition using spatio?temporal silhouette?based features[C]//Proceedings of the Mobile Multimedia/Image Processing, Security, and Applications, 2013: 194-203. [85] ZENG W, WANG C, YANG F F. Silhouette-based gait recognition via deterministic learning[J]. Pattern Recognition, 2014, 47(11): 3568-3584. [86] SHAIKH S H, SAEED K, CHAKI N. Gait recognition using partial silhouette?based approach[C]//Proceedings of the 2014 International Conference on Signal Processing and Integrated Networks, 2014: 101-106. [87] ZHANG L F, ZHANG L P, TAO D C, et al. A sparse and discriminative tensor to vector projection for human gait feature representation[J]. Signal Processing, 2015, 106: 245-252. [88] DENG M Q, WANG C, CHEN Q F. Human gait recognition based on deterministic learning through multiple views fusion[J]. Pattern Recognition Letters, 2016, 78: 56-63. [89] ZENG W, WANG C. View-invariant gait recognition via deterministic learning[J]. Neurocomputing, 2016, 175: 324-335. [90] BENGUA J A, HO P N, TUAN H D, et al. Matrix product state for higher-order tensor compression and classification[J]. IEEE Transactions on Signal Processing, 2017, 65(15): 4019-4030. [91] LI C, MIN X, SUN S Q, et al. DeepGait: a learning deep convolutional representation for view-invariant gait recognition using joint Bayesian[J]. Applied Sciences, 2017, 7(3): 210. [92] SEPAS-MOGHADDAM A, ETEMAD A. View-invariant gait recognition with attentive recurrent learning of partial representations[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2021, 3(1): 124-137. [93] HOU S, LIU X, CAO C, et al. Gait quality aware network: toward the interpretability of silhouette-based gait recognition[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(11): 8978-8988. [94] MA K, FU Y, CAO C S, et al. Learning visual prompt for gait recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 593-603. [95] CASTRO F M, DELGADO-ESCA?O R, HERNáNDEZ-GARCíA R, et al. AttenGait: gait recognition with attention and rich modalities[J]. Pattern Recognition, 2024, 148: 110171. [96] HUANG T H, BEN X Y, GONG C, et al. GaitDAN: cross-view gait recognition via adversarial domain adaptation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(9): 8026-8040. [97] TIAN S M, GAO H Y, HONG G Y, et al. QGait: toward accurate quantization for gait recognition with binarized input[J]. arXiv:2405.13859, 2024. [98] WANG R, SHEN C F, FAN C, et al. PointGait: boosting end-to-end 3D gait recognition with point clouds via spatiotemporal modeling[C]//Proceedings of the IEEE International Joint Conference on Biometrics. Piscataway: IEEE, 2023: 1-10. [99] WANG Y F, SUN J D, LI J, et al. Gait recognition based on 3D skeleton joints captured by kinect[C]//Proceedings of the IEEE International Conference on Image Processing. Piscataway: IEEE, 2016: 3151-3155. [100] WANG Z H, TANG C Y. Model-based gait recognition using graph network on very large population database[J]. arXiv:2112.10305, 2021. [101] GULER R A, NEVEROVA N, KOKKINOS I. DensePose: dense human pose estimation in the wild[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7297-7306. [102] JIANG S M, WANG Y F, ZHANG Y Y, et al. Real time gait recognition system based on kinect skeleton feature[C]//Proceedings of the Asian Conference on Computer Vision. Cham: Springer International Publishing, 2015: 46-57. [103] CAO Z, SIMON T, WEI S, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1302-1310. [104] FENG Y, LI Y C, LUO J B. Learning effective gait features using LSTM[C]//Proceedings of the 23rd International Conference on Pattern Recognition. Piscataway: IEEE, 2016: 325-330. [105] LIU D, YE M, LI X, et al. Memory-based gait recognition[C]//Proceedings of the British Machine Vision Conference, 2016: 1-12. [106] LIAO R J, YU S Q, AN W Z, et al. A model-based gait recognition method with body pose and human prior knowledge[J]. Pattern Recognition, 2020, 98: 107069. [107] CHOI S, KIM J, KIM W, et al. Skeleton-based gait recognition via robust frame-level matching[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(10): 2577-2592. [108] AN W Z, LIAO R J, YU S Q, et al. Improving gait recognition with 3D pose estimation[C]//Proceedings of the 13th Chinese Conference on Biometric Recognition. Cham: Springer International Publishing, 2018: 137-147. [109] JUN K, LEE D W, LEE K, et al. Feature extraction using an RNN autoencoder for skeleton-based abnormal gait recognition[J]. IEEE Access, 2020, 8: 19196-19207. [110] LI N, ZHAO X B, MA C. JointsGait: a model-based gait recognition method based on gait graph convolutional networks and joints relationship pyramid mapping[J]. arXiv:2005.08625, 2020. [111] LIN B B, ZHANG S L, BAO F. Gait recognition with multiple-temporal-scale 3D convolutional neural network[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 3054-3062. [112] TEEPE T, KHAN A, GILG J, et al. Gaitgraph: graph convolutional network for skeleton-based gait recognition[C]//Proceedings of the 2021 IEEE International Conference on Image Processing. Piscataway: IEEE, 2021: 2314-2318. [113] LI N, ZHAO X B. A strong and robust skeleton-based gait recognition method with gait periodicity priors[J]. IEEE Transactions on Multimedia, 2023, 25: 3046-3058. [114] FU Y, MENG S B, HOU S H, et al. GPGait: generalized pose-based gait recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 19538-19547. [115] WEI S W, CHEN Z L, WEI F F, et al. DyGait: gait recognition network based on skeleton dynamic features[J]. IEEE Access, 2024, 12: 189535-189546. [116] SHEN Y Z, YAN F, LIU L, et al. MST-Gait: application of multi-scale temporal modeling to gait recognition[C]//Proceedings of the 7th Chinese Conference on Pattern Recognition and Computer Vision. Singapore: Springer Nature Singapore, 2025: 334-348. [117] ZHANG C, CHEN X P, HAN G Q, et al. Spatial transformer network on skeleton?based gait recognition[J]. arXiv:2204.03873, 2022. [118] FAN C, MA J Z, JIN D Y, et al. SkeletonGait: gait recognition using skeleton maps[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2024: 1662-1669. [119] CATRUNA A, COSMA A, RADOI E. GaitPT: skeletons are all you need for gait recognition[C]//Proceedings of the IEEE 18th International Conference on Automatic Face and Gesture Recognition. Piscataway: IEEE, 2024: 1-10. [120] ZHU H D, ZHENG Z H, NEVATIA R. Gait recognition using 3?D human body shape inference[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2023: 909-918. [121] GUO H J, JI Q. Physics-augmented autoencoder for 3D skeleton-based gait recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 19570-19581. [122] PIN?I? D, SU?ANJ D, LENAC K. Gait recognition with self-supervised learning of gait features based on vision transformers[J]. Sensors (Basel), 2022, 22(19): 7140. [123] LIU Y Q, ZENG Y, PU J, et al. SelfGait: a spatiotemporal representation learning method for self-supervised gait recognition[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2021: 2570-2574. [124] COSMA A, CATRUNA A, RADOI E. Exploring self-supervised vision transformers for gait recognition in the wild[J]. Sensors (Basel), 2023, 23(5): 2680. [125] COTTON R J, PEIFFER J D, SHAH K, et al. Self-supervised learning of gait-based biomarkers[C]//Proceedings of the International Workshop on Predictive Intelligence in Medicine. Cham: Springer Nature Switzerland, 2023: 277-291. [126] XI H, REN K, LU P, et al. SSGait: enhancing gait recognition via semi-supervised self-supervised learning[J]. Applied Intelligence, 2024, 54(7): 5639-5657. [127] MA K, FU Y, ZHENG D Z, et al. Fine-grained unsupervised domain adaptation for gait recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 11279-11288. [128] ZHOU C C, GUAN X L, YU Z H, et al. An innovative unsupervised gait recognition based tracking system for safeguarding large-scale nature reserves in complex terrain[J]. Expert Systems with Applications, 2024, 244: 122975. [129] REN X, YANG S, HOU S, et al. Unsupervised gait recognition with selective fusion[J]. arXiv:2303.10772, 2023. [130] SEPAS-MOGHADDAM A, ETEMAD A. Deep gait recognition: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(1): 264-284. [131] HE Y W, ZHANG J P, SHAN H M, et al. Multi-task GANs for view-specific feature learning in gait recognition[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(1): 102-113. [132] HUANG P S, HARRIS C J, NIXON M S. Human gait recognition in canonical space using temporal templates[J]. IEE Proceedings-Vision, Image and Signal Processing, 1999, 146(2): 93. [133] TAN D L, HUANG K Q, YU S Q, et al. Efficient night gait recognition based on template matching[C]//Proceedings of the 18th International Conference on Pattern Recognition. Piscataway: IEEE, 2006: 1000-1003. [134] TAO D, LI X, WU X, et al. General tensor discriminant analysis and Gabor features for gait recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(10): 1700-1715. [135] CHEN C H, LIANG J M, ZHAO H, et al. Frame difference energy image for gait recognition with incomplete silhouettes[J]. Pattern Recognition Letters, 2009, 30(11): 977-984. [136] ZHANG J, PU J, CHEN C, et al. Low-resolution gait recognition[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2010, 40(4): 986-996. [137] NIXON M S, TAN T, CHELLAPPA R. Human identification based on gait[M]. Cham: Springer, 2010. [138] WANG C, ZHANG J P, PU J, et al. Chrono-gait image: a novel temporal template for gait recognition[C]//Proceedings of the European Conferenceon Computer Vision on Computer Vision. Berlin, Heidelberg: Springer, 2010: 257-270. [139] LIU Y, ZHANG J, WANG C, et al. Multiple HOG templates for gait recognition[C]//Proceedings of the 21st International Conference on Pattern Recognition, 2012: 2930-2933. [140] ARORA P, HANMANDLU M, SRIVASTAVA S. Gait based authentication using gait information image features[J]. Pattern Recognition Letters, 2015, 68: 336-342. [141] ZHAO X H, JIANG Y C, STATHAKI T, et al. Gait recognition method for arbitrary straight walking paths using appearance conversion machine[J]. Neurocomputing, 2016, 173: 530-540. [142] LISHANI A O, BOUBCHIR L, KHALIFA E, et al. Gabor filter bank-based GEI features for human gait recognition[C]//Proceedings of the 39th International Conference on Telecommunications and Signal Processing. Piscataway: IEEE, 2016: 648-651. [143] GHAEMINIA M H, SHOKOUHI S B, BADIEZADEH A. A new spatio-temporal patch-based feature template for effective gait recognition[J]. Multimedia Tools and Applications, 2020, 79(1): 713-736. [144] SEPAS-MOGHADDAM A, GHORBANI S, TROJE N F, et al. Gait recognition using multi-scale partial representation transformation with capsules[C]//Proceedings of the 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 8045-8052. [145] PALLA S R, SAHU G, PARIDA P. Human gait recognition using firefly template segmentation[J]. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 2022, 10(5): 565-575. [146] HUANG B Y, ZHOU C J, HE L W, et al. GaitCTCG: cross-view gait recognition via cascaded residual temporal shift and comprehensive multi-granularity learning[J]. Applied Intelligence, 2024, 54(3): 2428-2444. [147] NITHYAKANI P, UKRIT F M. Deep multi-convolutional stacked capsule network fostered human gait recognition from enhanced gait energy image[J]. Signal, Image and Video Processing, 2024, 18(2): 1375-1382. [148] MA K, FU Y, ZHENG D Z, et al. Dynamic aggregated network for gait recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 22076-22085. [149] ISAAC E R H P, ELIAS S, RAJAGOPALAN S, et al. View-invariant gait recognition through genetic template segmentation[J]. IEEE Signal Processing Letters, 2017, 24(8): 1188-1192. [150] WANG R S, SHI Y X, LING H F, et al. Gait recognition via gait period set[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2023, 5(2): 183-195. [151] ZHANG J, LI W Q, OGUNBONA P, et al. Recent advances in transfer learning for cross-dataset visual recognition[J]. ACM Computing Surveys, 2020, 52(1): 1-38. [152] 张超越, 张荣. 结合轮廓与姿态的时空融合步态识别方法[J]. 计算机工程与应用, 2023, 59(16): 135-142. ZHANG C Y, ZHANG R. Spatio-temporal fusion gait recognition method combining silhouette and pose[J]. Computer Engineering and Applications, 2023, 59(16): 135-142. [153] 周潇涵, 王修晖. 基于非对称双路识别网络的步态识别方法[J]. 计算机工程与应用, 2022, 58(4): 150-156. ZHOU X H, WANG X H. Novel gait recognition method based on asymmetric two-path network[J]. Computer Engineering and Applications, 2022, 58(4): 150-156. [154] 徐健, 黄磊, 陈倩倩, 等. 基于多尺度特征迁移学习的步态识别研究[J]. 计算机工程与应用, 2021, 57(20): 180-187. XU J, HUANG L, CHEN Q Q, et al. Research on pedestrian gait recognition based on multi-scale feature transfer learning[J]. Computer Engineering and Applications, 2021, 57(20): 180-187. [155] FANG H S, XIE S Q, TAI Y W, et al. RMPE: regional multi-person pose estimation[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2353-2362. [156] XUE Z J, MING D, SONG W, et al. Infrared gait recognition based on wavelet transform and support vector machine[J]. Pattern Recognition, 2010, 43(8): 2904-2910. |
| [1] | 李淑慧, 蔡伟, 王鑫, 高蔚洁, 狄星雨. 深度学习框架下的红外与可见光图像融合方法综述[J]. 计算机工程与应用, 2025, 61(9): 25-40. |
| [2] | 陈浞, 刘东青, 唐平华, 黄燕, 张文霞, 贾岩, 程海峰. 面向目标检测的物理对抗攻击研究进展[J]. 计算机工程与应用, 2025, 61(9): 80-101. |
| [3] | 王婧, 李云霞. NS-FEDformer模型对股票收益率的预测研究[J]. 计算机工程与应用, 2025, 61(9): 334-342. |
| [4] | 甄彤, 张威振, 李智慧. 遥感影像中种植作物结构分类方法综述[J]. 计算机工程与应用, 2025, 61(8): 35-48. |
| [5] | 李仝伟, 仇大伟, 刘静, 逯英航. 基于RGB与骨骼数据的人体行为识别综述[J]. 计算机工程与应用, 2025, 61(8): 62-82. |
| [6] | 温浩, 杨洋. 融合ERNIE与知识增强的临床短文本分类研究[J]. 计算机工程与应用, 2025, 61(8): 108-116. |
| [7] | 王燕, 卢鹏屹, 他雪. 结合特征融合注意力的规范化卷积图像去雾网络[J]. 计算机工程与应用, 2025, 61(8): 226-238. |
| [8] | 周佳妮, 刘春雨, 刘家鹏. 融合通道与多头注意力的股价趋势预测模型[J]. 计算机工程与应用, 2025, 61(8): 324-338. |
| [9] | 邢素霞, 李珂娴, 方俊泽, 郭正, 赵士杭. 深度学习下的医学图像分割综述[J]. 计算机工程与应用, 2025, 61(7): 25-41. |
| [10] | 陈宇, 权冀川. 伪装目标检测:发展与挑战[J]. 计算机工程与应用, 2025, 61(7): 42-60. |
| [11] | 翟慧英, 郝汉, 李均利, 占志峰. 铁路设施无人机自主巡检算法研究综述[J]. 计算机工程与应用, 2025, 61(7): 61-80. |
| [12] | 韩佰轩, 彭月平, 郝鹤翔, 叶泽聪. DMU-YOLO:机载视觉的多类异常行为检测算法[J]. 计算机工程与应用, 2025, 61(7): 128-140. |
| [13] | 史昕, 王浩泽, 纪艺, 马峻岩. 融合时空特征的多模态车辆轨迹预测方法[J]. 计算机工程与应用, 2025, 61(7): 325-333. |
| [14] | 王文举, 唐邦, 顾泽骅, 王森. 深度学习的多视角三维重建技术综述[J]. 计算机工程与应用, 2025, 61(6): 22-35. |
| [15] | 孙宇, 刘川, 周扬. 深度学习在知识图谱构建及推理中的应用[J]. 计算机工程与应用, 2025, 61(6): 36-52. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||