计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (14): 54-64.DOI: 10.3778/j.issn.1002-8331.2411-0209

• 热点与综述 • 上一篇    下一篇

红外图像生成中语义失真改善技术综述

徐临楷,耿蕊   

  1. 北京信息科技大学,北京 100192
  • 出版日期:2025-07-15 发布日期:2025-07-15

Review of Semantic Distortion Improvement Techniques in Infrared Image Generation

XU Linkai, GENG Rui   

  1. Beijing Information Science & Technology University, Beijing 100192, China
  • Online:2025-07-15 Published:2025-07-15

摘要: 随着红外技术的发展,基于可见光图像转换的红外图像生成方法成为各应用领域获取红外数据源的有效途径。然而,可见光图像和红外图像之间较大的模态差异易使生成的图像出现不同程度的语义失真,给下游任务带来困难。在深入研究实现红外图像生成的深度模型的基础上,归纳并总结其中改善语义失真的方法与原理;结合理论详细探讨语义失真改善效果的评估手段和实验对比情况,分析不同改善方法对转换图像的针对性与适用性;探究现有红外图像生成任务中的挑战,对领域的未来发展方向进行展望。

关键词: 红外与可见光, 图像生成, 图像转换, 语义失真

Abstract: With the development of infrared technology, the infrared image generation method based on visible image translation has become an effective way to obtain infrared data sources in various application fields. However, the large modal difference between visible images and infrared images tends to cause semantic distortion of different degrees in the generated images, bringing difficulties to downstream tasks. Based on the in-depth research of the deep generative models employed in infrared image generation, this paper provides a comprehensive summary of the methods and principles that mitigate semantic distortion. Theoretical insights are integrated to elaborate the evaluation metrics and experimental comparisons. This paper analyzes the purpose and applicability of different methods in image translation. Additionally, it discusses the current challenges and future directions in infrared image generation tasks.

Key words: infrared and visible, image generation, image translation, semantic distortion