计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (10): 66-78.DOI: 10.3778/j.issn.1002-8331.2409-0215

• 热点与综述 • 上一篇    下一篇

基于深度强化学习的视觉导航方法综述

高宇宁,王安成,赵华凯,罗豪龙,杨子迪,李建胜   

  1. 1.信息工程大学 地理空间信息学院,郑州 450001
    2.智慧中原地理信息技术河南省协同创新中心,郑州 450001
    3.智慧地球重点实验室,北京 100029
    4.北京卫星导航中心,北京 100094
  • 出版日期:2025-05-15 发布日期:2025-05-15

Review on Visual Navigation Methods Based on Deep Reinforcement Learning

GAO Yuning, WANG Ancheng, ZHAO Huakai, LUO Haolong, YANG Zidi, LI Jiansheng   

  1. 1.School of Geospatial Information, Information Engineering University, Zhengzhou 450001, China
    2.Collaborative Innovation Center of Geo-Information Technology for Smart Central Plains of Henan Province, Zhengzhou 450001, China
    3.Key Laboratory of Smart Earth, Beijing 100029, China
    4.Beijing Satellite Navigation Center, Beijing 100094, China
  • Online:2025-05-15 Published:2025-05-15

摘要: 传统的视觉导航方法对高精度地图的依赖性较高,且存在难以避免的误差积累问题,在面对复杂动态环境中的导航任务时往往表现不佳。基于深度强化学习的视觉导航方法通过模拟人类自身的导航方式,能够直接根据视觉信息以端到端的方式实现指定目标的安全导航,是视觉导航领域新兴的研究热点。为探讨深度强化学习视觉导航方向的最新研究问题,直观对比该方向的最新方法,介绍了深度强化学习导航方法的背景和理论。聚焦近五年该方向的主要研究问题,从数据利用、策略优化和场景泛化三个方面对重要方法进行了总结分析。最后给出了对于此类方法目前研究情况和未来研究问题的思考,在总结最新研究动态的同时为相关方法未来的研究提供参考。

关键词: 视觉导航, 深度强化学习, 样本效率, 泛化, 计算机视觉

Abstract: Traditional visual navigation methods are highly dependent on high-precision maps, and suffer from inevitable issues of error accumulation. These issues result in suboptimal performance when the traditional navigation methods are used in complex dynamic environments. Visual navigation methods based on deep reinforcement learning, by simulating human’s innate navigation abilities, can achieve safe navigation to specified targets in an end-to-end manner by directly using visual information. This kind of methods has emerged as a promising research hotspot in the field of visual navigation. In order to explore the latest research issues in the direction of deep reinforcement learning navigation, and intuitively analyze the latest methods, this paper introduces the background and theories of deep reinforcement learning. Then, it summarizes and analyzes crucial methods from three aspects: data utilization, policy optimization, and scene generalization, focusing on the major research issues in this direction over the past five years. Finally, this paper offers reflections on the current research status and future research directions of such methods, aiming to provide a reference for future investigations in related areas while summarizing the latest research trends.

Key words: visual navigation, deep reinforcement learning, sample efficiency, generalization, computer vision