
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (10): 50-65.DOI: 10.3778/j.issn.1002-8331.2408-0350
刘雪洋,李卫军,刘世侠,丁建平,苏易礌
出版日期:2025-05-15
发布日期:2025-05-15
LIU Xueyang, LI Weijun, LIU Shixia, DING Jianping, SU Yilei
Online:2025-05-15
Published:2025-05-15
摘要: 知识推理作为知识图谱补全中一项重要任务,受到了学术界的广泛关注。随着知识推理技术的发展,将图神经网络应用于知识推理的方法可以充分考虑知识图谱的结构信息,使其具备更好的可解释性和更强的推理能力,是目前的研究热点之一。对知识图谱和知识推理的基本概念进行了叙述。从封闭世界和开放世界两个角度对基于图神经网络的知识推理方法进行了归纳。在封闭世界下,介绍了图卷积神经网络和图注意力神经网络两类方法;在开放世界中,探讨了半归纳式和全归纳式两种方法。对这些方法的典型模型框架进行了对比分析,并总结了各自的优缺点。最后对图神经网络推理在智能问答、推荐系统以及生物医疗上的应用进行了探讨,并对基于图神经网络知识推理的未来研究方向进行了展望。
刘雪洋, 李卫军, 刘世侠, 丁建平, 苏易礌. 基于图神经网络的知识推理方法研究综述[J]. 计算机工程与应用, 2025, 61(10): 50-65.
LIU Xueyang, LI Weijun, LIU Shixia, DING Jianping, SU Yilei. Review of Knowledge Reasoning Methods Based on Graph Neural Networks[J]. Computer Engineering and Applications, 2025, 61(10): 50-65.
| [1] SAGIROGLU S, SINANC D. Big data: a review[C]//Proceedings of the 2013 International Conference on Collaboration Technologies and Systems. Piscataway: IEEE, 2013: 42-47. [2] JIANG B C, TAN L H, REN Y, et al. Intelligent interaction with virtual geographical environments based on geographic knowledge graph[J]. ISPRS International Journal of Geo-Information, 2019, 8(10): 428. [3] RINGLER D, PAULHEIM H. One knowledge graph to rule them all? Analyzing the differences between DBpedia, YAGO, Wikidata & co[C]//Proceedings of the 40th Annual German Conference on AI, Advances in Artificial Intelligence. Cham: Springer, 2017: 366-372. [4] AUER S, BIZER C, KOBILAROV G, et al. DBpedia: a nucleus for a web of open data[C]//Proceedings of the 2007 International Semantic Web Conference. Berlin, Heidelberg: Springer, 2007: 722-735. [5] CIMIANO P, PAULHEIM H. Knowledge graph refinement: a survey of approaches and evaluation methods[J]. Semantic Web, 2017, 8(3): 489-508. [6] CHEN X J, JIA S B, XIANG Y. A review: knowledge reasoning over knowledge graph[J]. Expert Systems with Applications, 2020, 141: 112948. [7] 官赛萍, 靳小龙, 贾岩涛, 等. 面向知识图谱的知识推理研究进展[J]. 软件学报, 2018, 29(10): 2966-2994. GUAN S P, JIN X L, JIA Y T, et al. Knowledge reasoning over knowledge graph: a survey[J]. Journal of Software, 2018, 29(10): 2966-2994. [8] TIAN L, ZHOU X, WU Y P, et al. Knowledge graph and knowledge reasoning: a systematic review[J]. Journal of Electronic Science and Technology, 2022, 20(2): 100159. [9] 孙水发, 李小龙, 李伟生, 等. 图神经网络应用于知识图谱推理的研究综述[J]. 计算机科学与探索, 2023, 17(1): 27-52. SUN S F, LI X L, LI W S, et al. Review of graph neural networks applied to knowledge graph reasoning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 27-52. [10] AUER S, KOVTUN V, PRINZ M, et al. Towards a knowledge graph for science[C]//Proceedings of the 8th International Conference on Web Intelligence, Mining and Semantics. New York: ACM, 2018: 1-6. [11] ZHOU J, CUI G Q, HU S D, et al. Graph neural networks: a review of methods and applications[J]. AI Open, 2020, 1: 57-81. [12] CAI H Y, ZHENG V W, CHANG K C. A comprehensive survey of graph embedding: problems, techniques, and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(9): 1616-1637. [13] BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[J]. arXiv:1312.6203, 2013. [14] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the 15th International Conference on Semantic Web. Cham: Springer, 2018: 593-607. [15] TIAN A Q, ZHANG C H, RANG M, et al. RA-GCN[C]//Proceedings of the 2020 12th International Conference on Machine Learning and Computing. New York: ACM, 2020: 580-586. [16] YE R, LI X, FANG Y J, et al. A vectorized relational graph convolutional network for multi-relational network alignment[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. New York: ACM, 2019: 4135-4141. [17] BORDES A, USUNIER N, GARCIA-DURáN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2, 2013: 2787-2795. [18] CAI L, YAN B, MAI G C, et al. TransGCN: coupling transformation assumptions with graph convolutional networks for link prediction[C]//Proceedings of the 10th International Conference on Knowledge Capture. New York: ACM, 2019: 131-138. [19] VASHISHTH S, SANYAL S, NITIN V, et al. Composition-based multi-relational graph convolutional networks[J]. arXiv:1911.03082, 2019. [20] SUN Z Q, DENG Z H, NIE J Y, et al. RotatE: knowledge graph embedding by relational rotation in complex space[J]. arXiv:1902.10197, 2019. [21] YU D H, YANG Y M, ZHANG R H, et al. Knowledge embedding based graph convolutional network[C]//Proceedings of the Web Conference 2021. New York: ACM, 2021: 1619-1628. [22] SHANG C, TANG Y, HUANG J, et al. End-to-end structure-aware convolutional networks for knowledge base completion[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 3060-3067. [23] DUAN J H, HUANG Y C, ZHU Y A, et al. Attention-based relational graph convolutional network for knowledge graph reasoning[C]//Proceedings of the 2022 21st International Symposium on Communications and Information Technologies. Piscataway: IEEE, 2022: 216-221. [24] QIU Y, LIU Y J, TONG Y, et al. Recommendation of knowledge graph convolutional networks based on multilayer BiLSTM and self-attention[J]. Mobile Information Systems, 2022: 8247846. [25] HE H T, NIU H R, FENG J Z, et al. An embedding model for knowledge graph completion based on graph sub-hop convolutional network[J]. Big Data Research, 2022, 30: 100351. [26] MA T, HUANG L T, LU Q Q, et al. KR-GCN: knowledge-aware reasoning with graph convolution network for explainable recommendation[J]. ACM Transactions on Information Systems, 2023, 41(1): 1-27. [27] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//Proceedings of the 6th International Conference on Learning Representations, 2018. [28] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008. [29] NATHANI D, CHAUHAN J, SHARMA C, et al. Learning attention-based embeddings for relation prediction in knowledge graphs[J]. arXiv:1906.01195, 2019. [30] XIE Z W, ZHOU G Y, LIU J, et al. ReInceptionE: relation-aware inception network with joint local-global structural information for knowledge graph embedding[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 5929-5939. [31] YIN H, ZHONG J, WANG C, et al. GS-InGAT: an interaction graph attention network with global semantic for knowledge graph completion[J]. Expert Systems with Applications, 2023, 228: 120380. [32] 陈加兴, 胡志伟, 李茹, 等. 融合描述信息和结构特征的知识图谱链接预测[J]. 计算机科学与探索, 2024, 18(2): 486-495. CHEN J X, HU Z W, LI R, et al. Knowledge graph link prediction fusing description and structural features[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 486-495. [33] ZHANG Z, ZHUANG F Z, ZHU H S, et al. Relational graph neural network with hierarchical attention for knowledge graph completion[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(5): 9612-9619. [34] ZHAO X J, JIA Y, LI A P, et al. Target relational attention-oriented knowledge graph reasoning[J]. Neurocomputing, 2021, 461: 577-586. [35] MA J T, LI D Y, ZHU H D, et al. GAFM: a knowledge graph completion method based on graph attention faded mechanism[J]. Information Processing & Management, 2022, 59(5): 103004. [36] JI K X, HUI B, LUO G C. Graph attention networks with local structure awareness for knowledge graph completion[J]. IEEE Access, 2020, 8: 224860-224870. [37] WANG Y Z, WANG H Z, LU W B, et al. HyGGE: hyperbolic graph attention network for reasoning over knowledge graphs[J]. Information Sciences, 2023, 630: 190-205. [38] ZHANG X, ZHANG C X, GUO J T, et al. Graph attention network with dynamic representation of relations for knowledge graph completion[J]. Expert Systems with Applications, 2023, 219: 119616. [39] HAMILTON W L, YING R, LESKOVEC J, et al. Inductive representation learning on large graphs[C]//Advances in Neural Information Processing Systems 30, 2017: 1024-1034. [40] ZENG H Q, ZHOU H K, SRIVASTAVA A, et al. GraphSAINT: graph sampling based inductive learning method[J]. arXiv:1907.04931, 2019. [41] BI Z Q, ZHANG T C, ZHOU P, et al. Knowledge transfer for out-of-knowledge-base entities: improving graph-neural-network-based embedding using convolutional layers[J]. IEEE Access, 2020, 8: 159039-159049. [42] CHEN X J, DING L, XIANG Y. Neighborhood aggregation based graph attention networks for open-world knowledge graph reasoning[J]. Journal of Intelligent & Fuzzy Systems, 2021, 41(2): 3797-3808. [43] WANG C J, ZHOU X F, PAN S R, et al. Exploring relational semantics for inductive knowledge graph completion[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(4): 4184-4192. [44] JIN J, WANG Y, DU K, et al. Inductive relation prediction using analogy subgraph embeddings[C]//Proceedings of the 10th International Conference on Learning Representations, 2021. [45] WANG J C, WANG X Z, LUO X F, et al. Open-world relationship prediction[C]//Proceedings of the 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence. Piscataway: IEEE, 2020: 323-330. [46] TERU K K, DENIS E G, HAMILTON W L, et al. Inductive relation prediction by subgraph reasoning[C]//Proceedings of the 37th International Conference on Machine Learning, 2020: 9448-9457. [47] MAI S J, ZHENG S J, YANG Y D, et al. Communicative message passing for inductive relation reasoning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5): 4294-4302. [48] CHEN J J, HE H R, WU F, et al. Topology-aware correlations between relations for inductive link prediction in knowledge graphs[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(7): 6271-6278. [49] DU Z X, ZHOU C, YAO J C, et al. CogKR: cognitive graph for multi-hop knowledge reasoning[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(2): 1283-1295. [50] WANG H W, REN H Y, LESKOVEC J, et al. Relational message passing for knowledge graph completion[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 1697-1707. [51] PAN Y D, LIU J, ZHANG L L, et al. Inductive relation prediction with logical reasoning using contrastive representations[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2022: 4261-4274. [52] XU X H, ZHANG P, HE Y Q, et al. Subgraph neighboring relations infomax for inductive link prediction on knowledge graphs[J]. arXiv:2208.00850, 2022. [53] LIANG K, MENG L Y, ZHOU S H, et al. Message intercommunication for inductive relation reasoning[J]. arXiv:2305.14074, 2023. [54] LIN Q K, LIU J, XU F Z, et al. Incorporating context graph with logical reasoning for inductive relation prediction[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 893-903. [55] HUANG Q, REN H Y, LESKOVEC J, et al. Few-shot relational reasoning via connection subgraph pretraining[C]//Advances in Neural Information Processing Systems 35, 2022: 6397-6409. [56] XIE S R, PAN Q F, WANG X Z, et al. Combining prompt learning with contextual semantics for inductive relation prediction[J]. Expert Systems with Applications, 2024, 238: 121669. [57] ZENG D J, HUANG T J, ZHANG Z H, et al. Entity neighborhood awareness and hierarchical message aggregation for inductive relation prediction[J]. Information Processing & Management, 2024, 61(4): 103737. [58] WU J F, XIONG A L, MAI S J, et al. Relation-dependent contrastive learning with cluster sampling for inductive relation prediction[J]. Neurocomputing, 2024, 579: 127425. [59] ZHANG Y F, WANG W Q, YIN H Z, et al. Disconnected emerging knowledge graph oriented inductive link prediction[C]//Proceedings of the 2023 IEEE 39th International Conference on Data Engineering. Piscataway: IEEE, 2023: 381-393. [60] DAS R, GODBOLE A, NAIK A, et al. Knowledge base question answering by case-based reasoning over subgraphs[C]//Proceedings of the 39th International Conference on Machine Learning, 2022: 4777-4793. [61] NARASIMHAN M, LAZEBNIK S, SCHWING A G, et al. Out of the box[C]//Advances in Neural Information Processing Systems 31, 2018: 2659-2670. [62] QIU L, XIAO Y X, QU Y R, et al. Dynamically fused graph network for multi-hop reasoning[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 6140-6150. [63] 李晓辉. 基于图神经网络的多跳推理问答研究[D]. 成都: 四川大学, 2021. LI X H. Research on multi-hop question answering based on graph neural network[D]. Chengdu: Sichuan University, 2021. [64] YASUNAGA M, REN H Y, BOSSELUT A, et al. QA-GNN: reasoning with language models and knowledge graphs for question answering[J]. arXiv:2104.06378, 2021. [65] ZHAO C, XIONG C Y, QIAN X, et al. Complex factoid question answering with a free-text knowledge graph[C]// Proceedings of the Web Conference 2020. New York: ACM, 2020: 1205-1216. [66] LI T, LI H, ZHONG S, et al. Knowledge graph representation reasoning for recommendation system[J]. Journal of New Media, 2020, 2(1): 21-30. [67] XIAN Y K, FU Z H, MUTHUKRISHNAN S, et al. Reinforcement knowledge graph reasoning for explainable recommendation[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 285-294. [68] WANG X, HE X N, CAO Y X, et al. KGAT: knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 950-958. [69] YING R, HE R N, CHEN K F, et al. Graph convolutional neural networks for web-scale recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 974-983. [70] 吴国栋, 王雪妮, 刘玉良. 知识图谱增强的图神经网络推荐研究进展[J]. 计算机工程与应用, 2023, 59(4): 18-29. WU G D, WANG X N, LIU Y L. Research advances on graph neural network recommendation of knowledge graph enhancement[J]. Computer Engineering and Applications, 2023, 59(4): 18-29. [71] 张彬, 郝利新, 张国防. 融合元图邻域的知识图谱推荐模型[J]. 计算机应用研究, 2024, 41(8): 2412-2418. ZHANG B, HAO L X, ZHANG G F. Knowledge graph recommendation model with integrated meta-graph neighborhoods[J]. Application Research of Computers, 2024, 41(8): 2412-2418. [72] IOANNIDIS V N, MARQUES A G, GIANNAKIS G B. Graph neural networks for predicting protein functions[C]//Proceedings of the 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing. Piscataway: IEEE, 2019: 221-225. [73] JIA M H, LIU W J, DUAN J W, et al. Efficient graph convolutional networks for seizure prediction using scalp EEG[J]. Frontiers in Neuroscience, 2022, 16: 967116. [74] WANG H Z, HUANG F, XIONG Z K, et al. A heterogeneous network-based method with attentive meta-path extraction for predicting drug-target interactions[J]. Briefings in Bioinformatics, 2022, 23(4): bbac184. [75] YING R, BOURGEOIS D, YOU J X, et al. GNNExplainer: generating explanations for graph neural networks[J]. arXiv:1903.03894, 2019. [76] YASUNAGA M, BOSSELUT A, REN H Y, et al. Deep bidirectional language-knowledge graph pretraining[C]//Advances in Neural Information Processing Systems 35, 2022: 37309-37323. |
| [1] | 周家啟, 宋燃, 余正涛, 黄于欣, 徐佳龙. 基于规则和嵌入联合学习的低资源知识图谱补全[J]. 计算机工程与应用, 2025, 61(9): 148-158. |
| [2] | 刘桂红, 焦琛添. 融入用户意图的图交互新闻推荐模型[J]. 计算机工程与应用, 2025, 61(9): 159-167. |
| [3] | 董磊, 吴福居, 史健勇, 潘龙飞. 基于大语言模型的施工安全多模态知识图谱的构建与应用[J]. 计算机工程与应用, 2025, 61(9): 325-333. |
| [4] | 刘海超, 柳林, 王海龙, 赵巍伟, 刘静. 知识图谱嵌入方法的链接预测研究综述[J]. 计算机工程与应用, 2025, 61(8): 17-34. |
| [5] | 温浩, 杨洋. 融合ERNIE与知识增强的临床短文本分类研究[J]. 计算机工程与应用, 2025, 61(8): 108-116. |
| [6] | 张吴波, 邹旺, 熊黎, 戴顺鄂, 吴文欢. 多通道句法门控图神经网络用于句子级情感分析[J]. 计算机工程与应用, 2025, 61(8): 135-144. |
| [7] | 谢斌红, 唐彪, 张睿. UBA-OWDT:一种新型的开放世界目标检测网络[J]. 计算机工程与应用, 2025, 61(8): 215-225. |
| [8] | 史昕, 王浩泽, 纪艺, 马峻岩. 融合时空特征的多模态车辆轨迹预测方法[J]. 计算机工程与应用, 2025, 61(7): 325-333. |
| [9] | 马蕴一, 许明, 金海波. 多通道自适应特征融合的城市路网交通流量预测[J]. 计算机工程与应用, 2025, 61(7): 334-341. |
| [10] | 任海玉, 刘建平, 王健, 顾勋勋, 陈曦, 张越, 赵昌顼. 基于大语言模型的智能问答系统研究综述[J]. 计算机工程与应用, 2025, 61(7): 1-24. |
| [11] | 贾莉, 马廷淮, 桑晨扬, 潘倩. 融合知识和语义信息的双编码器自动摘要模型[J]. 计算机工程与应用, 2025, 61(7): 213-221. |
| [12] | 田侃, 曹新汶, 张浩然, 先兴平, 吴涛, 宋秀丽. 结合图卷积模型和共享编码的知识图谱问答方法[J]. 计算机工程与应用, 2025, 61(7): 233-244. |
| [13] | 孙宇, 刘川, 周扬. 深度学习在知识图谱构建及推理中的应用[J]. 计算机工程与应用, 2025, 61(6): 36-52. |
| [14] | 李敏, 李学俊, 廖竞. 融合多层次卷积神经网络的知识图谱嵌入模型[J]. 计算机工程与应用, 2025, 61(6): 192-198. |
| [15] | 张建伟, 陈旭, 王叔洋, 景永俊, 宋吉飞. 时空图神经网络在物联网中的应用综述[J]. 计算机工程与应用, 2025, 61(5): 43-54. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||