[1] HUANG D, CHEN Q, HUANG S, et al. Consumer intention to use service robots: a cognitive-affective-conative framework[J]. International Journal of Contemporary Hospitality Management, 2024, 36(6): 1893-1913.
[2] LI B T. Tri-Co robots for the future: an interview with Guang-Zhong Yang[J]. National Science Review, 2023, 10(5): nwac263.
[3] DING H. Preface to special topic on Tri-Co robots[J]. National Science Review, 2023, 10(5): nwad037.
[4] 王志军, 刘璐, 李占贤. 共融机器人综述及展望[J]. 制造技术与机床, 2020(6): 30-38.
WANG Z J, LIU L, LI Z X. A review and outlook of coexisting-cooperative-cognitive robots[J]. Manufacturing Technology & Machine Tool, 2020(6): 30-38.
[5] AKALIN N, KRISTOFFERSSON A, LOUTFI A. Do you feel safe with your robot? Factors influencing perceived safety in human-robot interaction based on subjective and objective measures[J]. International Journal of Human-Computer Studies, 2022, 158: 102744.
[6] VAN DEN BERG J, GUY S J, LIN M, et al. Reciprocal n-body collision avoidance[C]//Proceedings of the 14th International Symposium on Robotics Research. Berlin, Heidelberg: Springer, 2011: 3-19.
[7] LIU S, CHANG P, HUANG Z, et al. Intention aware robot crowd navigation with attention-based interaction graph[C]//Proceedings of the 2023 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2023: 12015-12021.
[8] LI Y, HU X, ZHUANG Y, et al. Deep reinforcement learning (DRL): another perspective for unsupervised wireless localization[J]. IEEE Internet of Things Journal, 2019, 7(7): 6279-6287.
[9] MARTINEZ-BASELGA D, RIAZUELO L, MONTANO L. Improving robot navigation in crowded environments using intrinsic rewards[C]//Proceedings of the 2023 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2023: 9428-9434.
[10] SAMSANI S S, MUTAHIRA H, MUHAMMAD M S. Memory-based crowd-aware robot navigation using deep reinforcement learning[J]. Complex & Intelligent Systems, 2023, 9(2): 2147-2158.
[11] CHEN C, LIU Y, KREISS S, et al. Crowd-robot interaction: crowd-aware robot navigation with attention-based deep reinforcement learning[C]//Proceedings of the 2019 International Conference on Robotics and Automation, 2019: 6015-6022.
[12] SHI W, ZHOU Y, ZENG X, et al. Enhanced spatial attention graph for motion planning in crowded, partially observable environments[C]//Proceedings of the 2022 International Conference on Robotics and Automation, 2022: 4750-4756.
[13] VAN DER HEIDEN T, MIRUS F, VAN HOOF H. Social navigation with human empowerment driven deep reinforcement learning[C]//Proceedings of the 29th International Conference on Artificial Neural Networks. Cham: Springer, 2020: 395-407.
[14] VOLPI N C, POLANI D. Goal-directed empowerment: combining intrinsic motivation and task-oriented behavior[J]. IEEE Transactions on Cognitive and Developmental Systems, 2020, 15(2): 361-372.
[15] CHEN C, HU S, NIKDEL P, et al. Relational graph learning for crowd navigation[C]//Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2020: 10007-10013.
[16] ZHOU Z, ZHU P, ZENG Z, et al. Robot navigation in a crowd by integrating deep reinforcement learning and online planning[J]. Applied Intelligence, 2022, 52(13): 15600-15616.
[17] VEMULA A, MUELLING K, OH J. Social attention: modeling attention in human crowds[C]//Proceedings of the 2018 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2018: 4601-4607.
[18] ZHOU X, PIAO S, CHI W, et al. HeR-DRL: heterogeneous relational deep reinforcement learning for decentralized multi-robot crowd navigation[J]. arXiv:2403.10083, 2024.
[19] SIGAL A, LIN H C, MOON A J. Improving reinforcement learning training regimes for social robot navigation[J]. arXiv:2308.14947, 2023.
[20] TUAN P M, TAI N D, HUY T Q, et al. Flexible path planning of mobile robot for avoiding the dynamic obstacles using fuzzy controllers[J]. International Journal of Mechanical Engineering and Robotics Research, 2024, 13(1): 126-132.
[21] ESCUDIE E, MATIGNON L, SARAYDARYAN J. Attention graph for multi-robot social navigation with deep reinforcement learning[J]. arXiv:2401.17914, 2024.
[22] HELBING D, MOLNAR P. Social force model for pedestrian dynamics[J]. Physical review E, 1995, 51(5): 4282.
[23] CHEN Y F, LIU M, EVERETT M, et al. Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning[C]//Proceedings of the 2017 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2017: 285-292.
[24] FAN T, LONG P, LIU W, et al. Distributed multi-robot collision avoidance via deep reinforcement learning for navigation in complex scenarios[J]. The International Journal of Robotics Research, 2020, 39(7): 856-892.
[25] EVERETT M, CHEN Y F, HOW J P. Collision avoidance in pedestrian-rich environments with deep reinforcement learning[J]. IEEE Access, 2021, 9: 10357-10377. |