计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (11): 22-30.DOI: 10.3778/j.issn.1002-8331.2408-0033

• 热点与综述 • 上一篇    下一篇

深度学习的点云语义分割方法综述

蔡子悦,袁振岳,庞明勇   

  1. 南京师范大学 教育信息工程研究所,南京 210024
  • 出版日期:2025-06-01 发布日期:2025-05-30

Survey on Deep-Learning-Based Point Cloud Semantic Segmentation

CAI Ziyue, YUAN Zhenyue, PANG Mingyong   

  1. Institute of EduInfo Science & Technology, Nanjing Normal University, Nanjing 210024, China
  • Online:2025-06-01 Published:2025-05-30

摘要: 点云语义分割将点云中每个点赋予语义标签,实现对场景中不同物体的分割,是场景理解的基础。近年来,随着深度学习技术的发展,将深度学习与点云语义分割方法相结合,提升了点云语义分割的处理效率和分割精度,展现出卓越的性能,被广泛应用于交通、医学、建筑设计、虚拟现实等众多领域。在回顾点云语义分割发展历程的基础上,对已有研究进行分类综述,然后分析相关数据集和评价指标,对比已有方法的性能。最后,总结现有研究的不足,并展望未来发展方向。

关键词: 深度学习, 点云, 语义分割, 语义标签, 计算机视觉

Abstract: Point cloud semantic segmentation assigns semantic labels to each point in the point cloud to achieve the segmentation of different objects in the scene, which is the foundation for scene understanding. In recent years, with the development of deep learning technology, the combination of deep learning and point cloud semantic segmentation methods has improved the processing efficiency and segmentation accuracy, demonstrating excellent performance, and has been widely used in many fields such as transportation, medicine, architectural design, virtual reality, etc. Based on the review of the development history of point cloud semantic segmentation, this paper classifies and summarizes the existing research, analyzes related datasets and evaluation metrics, and compares the performance of existing methods. Finally, the paper highlights the deficiencies of existing research and looks forward to the future development directions.

Key words: deep learning, point cloud, semantic segmentation, semantic labels, computer vision