
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (11): 22-30.DOI: 10.3778/j.issn.1002-8331.2408-0033
蔡子悦,袁振岳,庞明勇
出版日期:2025-06-01
发布日期:2025-05-30
CAI Ziyue, YUAN Zhenyue, PANG Mingyong
Online:2025-06-01
Published:2025-05-30
摘要: 点云语义分割将点云中每个点赋予语义标签,实现对场景中不同物体的分割,是场景理解的基础。近年来,随着深度学习技术的发展,将深度学习与点云语义分割方法相结合,提升了点云语义分割的处理效率和分割精度,展现出卓越的性能,被广泛应用于交通、医学、建筑设计、虚拟现实等众多领域。在回顾点云语义分割发展历程的基础上,对已有研究进行分类综述,然后分析相关数据集和评价指标,对比已有方法的性能。最后,总结现有研究的不足,并展望未来发展方向。
蔡子悦, 袁振岳, 庞明勇. 深度学习的点云语义分割方法综述[J]. 计算机工程与应用, 2025, 61(11): 22-30.
CAI Ziyue, YUAN Zhenyue, PANG Mingyong. Survey on Deep-Learning-Based Point Cloud Semantic Segmentation[J]. Computer Engineering and Applications, 2025, 61(11): 22-30.
| [1] 秦飞巍, 沈希乐, 彭勇, 等. 无人驾驶中的场景实时语义分割方法[J]. 计算机辅助设计与图形学学报, 2021, 33(7): 1026-1037. QIN F W, SHEN X Y, PENG Y, et al. A real-time semantic segmentation approach for autonomous driving scenes[J]. Journal of Computer-Aided Design & Computer Graphics, 2021, 33(7): 1026-1037. [2] JIN Y H, HWANG I T, LEE W H. A mobile augmented reality system for the real-time visualization of pipes in point cloud data with a depth sensor[J]. Electronics, 2020, 9(5): 836. [3] BI X. Environmental perception technology for unmanned systems[M]. Cham: Springer Nature Singapore, 2021: 17-65. [4] CAI Y M, LONG Y Q, HAN Z G, et al. Swin Unet3D: a three-dimensional medical image segmentation network combining vision transformer and convolution[J]. BMC Medical Informatics and Decision Making, 2023, 23(1): 33-46. [5] ZHANG J Y, ZHAO X L, CHEN Z, et al. A review of deep learning-based semantic segmentation for point cloud[J]. IEEE Access, 2019, 7: 179118-179133. [6] ZHANG R, WU Y C, JIN W, et al. Deep-learning-based point cloud semantic segmentation: a survey[J]. Electronics, 2023, 12(17): 3642-3667. [7] 张佳颖, 赵晓丽, 陈正. 基于深度学习的点云语义分割综述[J]. 激光与光电子学进展, 2020, 57(4): 040002. ZHANG J Y, ZHAO X L, CHEN Z. Review of semantic segmentation of point cloud based on deep learning[J]. Laser & Optoelectronics Progress, 2020, 57(4): 040002. [8] 王涛, 王文举, 蔡宇. 基于深度学习的三维点云语义分割方法研究[J]. 计算机工程与应用, 2021, 57(23): 18-26. WANG T, WANG W J, CAI Y. Research of deep learning-based semantic segmentation for 3D point cloud[J]. Computer Engineering and Applications, 2021, 57(23): 18-26. [9] 景庄伟, 管海燕, 臧玉府, 等. 基于深度学习的点云语义分割研究综述[J]. 计算机科学与探索, 2021, 15(1): 1-26. JING Z W, GUAN H Y, ZANG Y F, et al. Survey of point cloud semantic segmentation based on deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(1): 1-26. [10] SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 945-953. [11] FENG Y F, ZHANG Z Z, ZHAO X B, et al. GVCNN: group-view convolutional neural networks for 3D shape recognition[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 264-272. [12] MATURANA D, SCHERER S. VoxNet: a 3D convolutional neural network for real-time object recognition[C]//Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2015: 922-928. [13] RIEGLER G, ULUSOY A O, GEIGER A. OctNet: learning deep 3D representations at high resolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6620-6629. [14] QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 77-85. [15] JIANG M Y, WU Y R, ZHAO T Q, et al. PointSIFT: a SIFT-like network module for 3D point cloud semantic segmentation[J]. arXiv:1807.00652, 2018. [16] ZHAO H S, JIANG L, FU C W, et al. PointWeb: enhancing local neighborhood features for point cloud processing[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5565-5573. [17] YE X Q, LI J M, HUANG H X, et al. 3D recurrent neural networks with context fusion for point cloud semantic segmentation[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 415-430. [18] HUANG Q G, WANG W Y, NEUMANN U. Recurrent slice networks for 3D segmentation of point clouds[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2626-2635. [19] WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 1-12. [20] LI R K, ZHANG Y M, NIU D M, et al. PointVGG: graph convolutional network with progressive aggregating features on point clouds[J]. Neurocomputing, 2021, 429: 187-198. [21] 张华, 徐瑞政, 郑南山, 等. 融合颜色信息和多尺度几何特征的点云语义分割方法[J]. 地球信息科学学报, 2024, 26(6): 1562-1575. ZHANG H, XU R Z, ZHENG N S, et al. Integrating color information and multi-scale geometric features for point cloud semantic segmentation[J]. Journal of Geo-Information Science, 2024, 26(6): 1562-1575. [22] ZHANG F H, FANG J, WAH B, et al. Deep FusionNet for point cloud semantic segmentation[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 644-663. [23] YE M S, XU S J, CAO T Y, et al. DRINet: a dual-representation iterative learning network for point cloud segmentation[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 7427-7436. [24] LI X Y, ZHANG G, JIANG T, et al. PRNet: point-range fusion network for real-time LiDAR semantic segmentation[C]//Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, 2022: 1116-1122. [25] XU J Y, ZHANG R X, DOU J, et al. RPVNet: a deep and efficient range-point-voxel fusion network for LiDAR point cloud segmentation[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 16004-16013. [26] YOU H X, FENG Y F, ZHAO X B, et al. PVRNet: point-view relation neural network for 3D shape recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 9119-9126. [27] ROBERT D, VALLET B, LANDRIEU L. Learning multi-view aggregation in the wild for large-scale 3D semantic segmentation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 5565-5574. [28] WANG C, PELILLO M, SIDDIQI K. Dominant set clustering and pooling for multi-view 3D object recognition[J]. arXiv:1906.01592, 2019. [29] TCHAPMI L, CHOY C, ARMENI I, et al. SEGCloud: semantic segmentation of 3D point clouds[C]//Proceedings of the 2017 International Conference on 3D Vision. Piscataway: IEEE, 2017: 537-547. [30] WU Z R, SONG S R, KHOSLA A, et al. 3D ShapeNets: a deep representation for volumetric shapes[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1912-1920. [31] WANG P S, LIU Y, GUO Y X, et al. O-CNN[J]. ACM Transactions on Graphics, 2017, 36(4): 1-11. [32] MENG H Y, GAO L, LAI Y K, et al. VV-Net: voxel VAE net with group convolutions for point cloud segmentation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 8499-8507. [33] ALEXANDRU ROSU R, SCHüTT P, QUENZEL J, et al. LatticeNet: fast point cloud segmentation using permutohedral lattices[J].arXiv:1912.05905, 2019. [34] QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[J]. arXiv: 1706. 02413, 2017. [35] ZHANG Z Y, HUA B S, YEUNG S K. ShellNet: efficient point cloud convolutional neural networks using concentric shells statistics[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1607-1616. [36] HU Q Y, YANG B, XIE L H, et al. RandLA-Net: efficient semantic segmentation of large-scale point clouds[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11105-11114. [37] MA X, QIN C, YOU H X, et al. Rethinking network design and local geometry in point cloud: a simple residual MLP framework[J]. arXiv:2202:07123, 2022. [38] ZHAN L X, LI W, MIN W D. FA-ResNet: feature affine residual network for large-scale point cloud segmentation[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 118: 103259. [39] ZHAO Z, LIU M, RAMANI K. Dynamic aggregation network for semantic scene segmentation[J]. arXiv:1907.12022, 2019. [40] LIU F Y, LI S P, ZHANG L Q, et al. 3DCNN-DQN-RNN: a deep reinforcement learning framework for semantic parsing of large-scale 3D point clouds[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 5679-5688. [41] SIMONOVSKY M, KOMODAKIS N. Dynamic edge-conditioned filters in convolutional neural networks on graphs[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 29-38. [42] LANDRIEU L, SIMONOVSKY M. Large-scale point cloud semantic segmentation with superpoint graphs[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4558-4567. [43] LEI H, AKHTAR N, MIAN A. Spherical kernel for efficient graph convolution on 3D point clouds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3664-3680. [44] LU Q, CHEN C, XIE W J, et al. PointNGCNN: deep convolutional networks on 3D point clouds with neighborhood graph filters[J]. Computers & Graphics, 2020, 86: 42-51. [45] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[[J]. arXiv:1409. 1556, 2014. [46] ZHANG K G, HAO M, WANG J, et al. Linked dynamic graph CNN: learning on point cloud via linking hierarchical features[J]. arXiv:1904.10014, 2019. [47] WANG L, HUANG Y C, HOU Y L, et al. Graph attention convolution for point cloud semantic segmentation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 10296-10305. [48] SHEN Y R, FENG C, YANG Y Q, et al. Mining point cloud local structures by kernel correlation and graph pooling[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4548-4557. [49] GENG Y X, WANG Z P, JIA L M, et al. 3DGraphSeg: a unified graph representation- based point cloud segmentation framework for full-range high-speed railway environments[J]. IEEE Transactions on Industrial Informatics, 2023, 19(12): 11430-11443. [50] ZHANG R, LI G Y, WIEDEMANN W, et al. KdO-Net: towards improving the efficiency of deep convolutional neural networks applied in the 3D pairwise point feature matching[J]. Remote Sensing, 2022, 14(12): 2883. [51] ZHANG N, PAN Z Y, LI T H, et al. Improving graph representation for point cloud segmentation via attentive filtering[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 1244-1254. [52] YUE G W, XIAO R, ZHAO Z Y, et al. AF-GCN: attribute-fusing graph convolution network for recommendation[J]. IEEE Transactions on Big Data, 2023, 9(2): 597-607. [53] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. arXiv.1706.03762, 2017. [54] YANG J C, ZHANG Q, NI B B, et al. Modeling point clouds with self-attention and gumbel subset sampling[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 3323-3332. [55] GUO M H, CAI J X, LIU Z N, et al. PCT: point cloud transformer[J]. Computational Visual Media, 2021, 7(2): 187-199. [56] ZHAO H S, JIANG L, JIA J Y, et al. Point transformer[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 16239-16248. [57] ENGEL N, BELAGIANNIS V, DIETMAYER K. Point transformer[J]. IEEE Access, 2021, 9: 134826-134840. [58] ZHONG Q, HAN X F. Point cloud learning with transformer[J]. arXiv:2104.13636, 2021. [59] HAN X F, JIN Y F, CHENG H X, et al. Dual transformer for point cloud analysis[J]. IEEE Transactions on Multimedia, 2022, 25: 5638-5648. [60] LAI X, LIU J H, JIANG L, et al. Stratified transformer for 3D point cloud segmentation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 8490-8499. [61] ZHOU J J, XIONG Y P, CHIU C, et al. SAT: size-aware transformer for 3D point cloud semantic segmentation[J]. arXiv:2301.06869, 2023. [62] ZHOU W, ZHAO Y H, XIAO Y, et al. TNPC: transformer-based network for point cloud classification[J]. Expert Systems with Applications, 2024, 239: 122438. [63] JIANG C R, HUANG K Z, WU J W, et al. PointGS: bridging and fusing geometric and semantic space for 3D point cloud analysis[J]. Information Fusion, 2023, 91: 316-326. [64] WU J W, SUN M J, JIANG C R, et al. Context-based local-global fusion network for 3D point cloud classification and segmentation[J]. Expert Systems with Applications, 2024, 251: 124023. [65] CHENG H Z, ZHU J H, LU J, et al. EDGCNet: joint dynamic hyperbolic graph convolution and dual squeeze-and-attention for 3D point cloud segmentation[J]. Expert Systems with Applications, 2024, 237: 121551. |
| [1] | 王婧, 李云霞. NS-FEDformer模型对股票收益率的预测研究[J]. 计算机工程与应用, 2025, 61(9): 334-342. |
| [2] | 李淑慧, 蔡伟, 王鑫, 高蔚洁, 狄星雨. 深度学习框架下的红外与可见光图像融合方法综述[J]. 计算机工程与应用, 2025, 61(9): 25-40. |
| [3] | 郝鹤菲, 张龙豪, 崔洪振, 朱宵月, 彭云峰, 李向晖. 深度神经网络在人体姿态估计中的应用综述[J]. 计算机工程与应用, 2025, 61(9): 41-60. |
| [4] | 陈浞, 刘东青, 唐平华, 黄燕, 张文霞, 贾岩, 程海峰. 面向目标检测的物理对抗攻击研究进展[J]. 计算机工程与应用, 2025, 61(9): 80-101. |
| [5] | 周佳妮, 刘春雨, 刘家鹏. 融合通道与多头注意力的股价趋势预测模型[J]. 计算机工程与应用, 2025, 61(8): 324-338. |
| [6] | 甄彤, 张威振, 李智慧. 遥感影像中种植作物结构分类方法综述[J]. 计算机工程与应用, 2025, 61(8): 35-48. |
| [7] | 李仝伟, 仇大伟, 刘静, 逯英航. 基于RGB与骨骼数据的人体行为识别综述[J]. 计算机工程与应用, 2025, 61(8): 62-82. |
| [8] | 温浩, 杨洋. 融合ERNIE与知识增强的临床短文本分类研究[J]. 计算机工程与应用, 2025, 61(8): 108-116. |
| [9] | 崔丽群, 郝思雅, 栾五洋. 基于Mamba的轻量级三维点云实例分割算法[J]. 计算机工程与应用, 2025, 61(8): 194-203. |
| [10] | 王燕, 卢鹏屹, 他雪. 结合特征融合注意力的规范化卷积图像去雾网络[J]. 计算机工程与应用, 2025, 61(8): 226-238. |
| [11] | 田媛, 赵明富, 宋涛, 熊海龙, 叶定兴, 王敏. 聚合全局-局部特征的真实点云语义分割[J]. 计算机工程与应用, 2025, 61(8): 260-266. |
| [12] | 邢素霞, 李珂娴, 方俊泽, 郭正, 赵士杭. 深度学习下的医学图像分割综述[J]. 计算机工程与应用, 2025, 61(7): 25-41. |
| [13] | 陈宇, 权冀川. 伪装目标检测:发展与挑战[J]. 计算机工程与应用, 2025, 61(7): 42-60. |
| [14] | 翟慧英, 郝汉, 李均利, 占志峰. 铁路设施无人机自主巡检算法研究综述[J]. 计算机工程与应用, 2025, 61(7): 61-80. |
| [15] | 韩佰轩, 彭月平, 郝鹤翔, 叶泽聪. DMU-YOLO:机载视觉的多类异常行为检测算法[J]. 计算机工程与应用, 2025, 61(7): 128-140. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||