计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (11): 1-21.DOI: 10.3778/j.issn.1002-8331.2411-0196

• 热点与综述 • 上一篇    下一篇

基于卷积神经网络的图像分类深度学习模型综述

刘鸿达,孙旭辉,李沂滨,韩琳,张宇   

  1. 山东大学 海洋研究院,山东 青岛 266237
  • 出版日期:2025-06-01 发布日期:2025-05-30

Review of Deep Learning Models for Image Classification Based on Convolutional Neural Networks

LIU Hongda, SUN Xuhui, LI Yibin, HAN Lin, ZHANG Yu   

  1. Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
  • Online:2025-06-01 Published:2025-05-30

摘要: 使用神经网络模型进行图像分类任务一直是非常重要的研究方向,随着深度学习技术的发展,对神经网络模型的要求也越来越高。在识别率高的同时,对模型的参数量、训练时间也都有较高的要求。卷积神经网络一直是深度学习中针对图像处理的主流方法,主要介绍基于卷积神经网络的分类模型的发展历程,分析其不同阶段各个模型的搭建思路;介绍Transformer与卷积神经网络结合的相关模型以及各模型在其他领域的应用情况。最后,对卷积神经网络的发展进行了探讨。

关键词: 卷积神经网络, 深度学习, 图像分类, Transformer

Abstract: Using neural network model for classification has always been a very important research direction. With the development of deep learning technology, the requirement for neural network model is getting higher and higher. At the same time, high recognition rate, the number of parameters and training time of the model are also highly required. Convolutional neural networks have always been the mainstream method for image classification in deep learning. This paper mainly introduces the development history of convolutional neural networks for classification model, and analyzes the construction ideas of each model at different stages. Secondly, the paper reviews relevant examples of Transformer combined with convolutional neural networks as well as the application of each model in other fields. Finally, the possible development directions of convolutional neural networks are discussed.

Key words: convolutional neural networks, deep learning, image classification, Transformer