
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (11): 31-50.DOI: 10.3778/j.issn.1002-8331.2407-0550
刘鑫楠,洪鑫宇,曹振洋,李荣荣,王子硕,周俊康,唐斌,陆恒杨
出版日期:2025-06-01
发布日期:2025-05-30
LIU Xinnan, HONG Xinyu, CAO Zhenyang, LI Rongrong, WANG Zishuo, ZHOU Junkang, TANG Bin, LU Hengyang
Online:2025-06-01
Published:2025-05-30
摘要: 随着社交媒体的迅速发展,谣言的传播对网络环境和社会秩序有着不容忽视的影响。因此,开展谣言检测研究,阻止其传播,对维持社会和谐至关重要。系统地梳理了近年来谣言检测领域的研究工作进展,阐释了谣言的定义以及相关概念的区别与联系;列举了谣言检测的常用数据集并重点对文本数据集进行分析,探讨了包括监督学习、半监督学习、无监督学习、少样本学习和零样本学习在内的多种机器学习范式策略的谣言检测方法;创新性地讨论了大模型在谣言检测中的应用,并综合介绍了图像、视频等多模态数据在谣言检测中的处理方法和相关研究。最后,对谣言检测面临的挑战以及未来可能的发展方向进行了探讨。
刘鑫楠, 洪鑫宇, 曹振洋, 李荣荣, 王子硕, 周俊康, 唐斌, 陆恒杨. 社交媒体谣言检测:方法、挑战与趋势[J]. 计算机工程与应用, 2025, 61(11): 31-50.
LIU Xinnan, HONG Xinyu, CAO Zhenyang, LI Rongrong, WANG Zishuo, ZHOU Junkang, TANG Bin, LU Hengyang. Social Media Rumor Detection: Methods, Challenges, and Trends[J]. Computer Engineering and Applications, 2025, 61(11): 31-50.
| [1] 张元园, 袁嘉霁. 基于社交媒体的谣言检测研究综述[J]. 数据通信, 2024(1): 28-33. ZHANG Y Y, YUAN J J. A review of rumor detection research based on social media[J]. Data Communication, 2024(1): 28-33. [2] 马圆圆. 社交平台上的谣言检测综述[J]. 长江信息通信, 2022, 35(4): 26-29. MA Y Y. Overview of rumor detection on social platforms[J]. Changjiang Information & Communications, 2022, 35(4): 26-29. [3] ALSAIF H F, ALDOSSARI H D. Review of stance detection for rumor verification in social media[J]. Engineering Applications of Artificial Intelligence, 2023, 119: 105801. [4] 高玉君, 梁刚, 蒋方婷, 等. 社会网络谣言检测综述[J]. 电子学报, 2020, 48(7): 1421-1435. GAO Y J, LIANG G, JIANG F T, et al. Social network rumor detection: a survey[J]. Acta Electronica Sinica, 2020, 48(7): 1421-1435. [5] 邓国峰, 唐贵伍. 网络谣言传播及其社会影响研究[J]. 求索, 2005(10): 88-90. DENG G F, TANG G W. Research on the spread of network rumors and its social impact[J]. Seeker, 2005(10): 88-90. [6] PETERSON W A, GIST N P. Rumor and public opinion[J]. American Journal of Sociology, 1951, 57(2): 159-167. [7] CASTILLO C, MENDOZA M, POBLETE B. Information credibility on twitter[C]//Proceedings of the 20th International Conference on World Wide Web. New York: ACM, 2011: 675-684. [8] ALLPORT G W, POSTMAN L. The psychology of rumor[M]. New York: Heney Holt and Company, 1947. [9] 陈燕方, 李志宇, 梁循, 等. 在线社会网络谣言检测综述[J]. 计算机学报, 2018, 41(7): 1648-1677. CHEN Y F, LI Z Y, LIANG X, et al. Review on rumor detection of online social networks[J]. Chinese Journal of Computers, 2018, 41(7): 1648-1677. [10] 贾硕, 张宁, 沈洪洲. 网络谣言传播与消解的研究进展[J]. 信息资源管理学报, 2019, 9(3): 62-72. JIA S, ZHANG N, SHEN H Z. Overviews on information dissemination and disappearance for online rumor[J]. Journal of Information Resources Management, 2019, 9(3): 62-72. [11] ZHOU X Y, ZAFARANI R. A survey of fake news[J]. ACM Computing Surveys, 2021, 53(5): 1-40. [12] MEEL P, VISHWAKARMA D K. Fake news, rumor, information pollution in social media and web: a contemporary survey of state-of-the-arts, challenges and opportunities[J]. Expert Systems with Applications, 2020, 153: 112986. [13] RUBIN V, CONROY N, CHEN Y M, et al. Fake news or truth?using satirical cues to detect potentially misleading news[C]//Proceedings of the 2nd Workshop on Computational Approaches to Deception Detection. Stroudsburg: ACL, 2016: 7-17. [14] 葛红. 基于深度学习的多模态虚假新闻检测技术研究[D]. 北京: 北方工业大学, 2023. GE H. Research on multimodal fake news detection technology based on deep learning[D]. Beijing: North China University of Technology, 2023. [15] LI Q Z, ZHANG Q, SI L, et al. Rumor detection on social media: datasets, methods and opportunities[J]. arXiv:1911. 07199, 2019. [16] LEON D, KALINA B, MARIA L, et al. Rumour Eval: determining rumour veracity and support for rumours[EB/OL]. (2017-08-20)[2024-07-01]. https://bfdogplmndidlpjfhoijckpakkdjkkil/pdf/viewer.html?file=https%3A%2F%2Farxiv.org%2Fpdf%2F1704.05972v1. [17] 董苏军. 面向社交媒体的谣言检测研究[D]. 苏州: 苏州大学, 2022. DONG S J. Research on rumor detection for social media[D]. Suzhou: Soochow University, 2022. [18] MITRA T, GILBERT E. CREDBANK: a large-scale social media corpus with associated credibility annotations[C]//Proceedings of the International AAAI Conference on Web and Social Media, 2015: 258-267. [19] SHU K, MAHUDESWARAN D, WANG S H, et al. FakeNewsNet: a data repository with news content, social context, and spatiotemporal information for studying fake news on social media[J]. Big Data, 2020, 8(3): 171-188. [20] DERCZYNSKI L, BONTCHEVA K, LUKASIK M, et al. PHEME: computing veracity—the fourth challenge of big social data[C]//Proceedings of the European Semantic Web Conference ESWC, 2014. [21] MA J, GAO W, WONG K F. Detect rumors in microblog posts using propagation structure via kernel learning[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2017: 708-717. [22] SILVERMAN B C, STRAPAGIEL L, SHABAN H, et al. Hyperpartisan facebook pages are publishing false and misleading information at an alarming rate[EB/OL]. (2016-10-21)[2024-07-01]. https://www.buzzfeed.com/craigsilverman/partisan-fb-pages-analysis. [23] HU Y, HUANG H Y, CHEN A F, et al. Weibo-COV: a large-scale COVID-19 social media dataset from Weibo[J]. arXiv:2005.09174, 2020. [24] NAN Q, CAO J, ZHU Y C, et al. MDFEND: multi-domain fake news detection[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 3343-3347. [25] 欧艳鹏. 基于co-attention的微博谣言检测研究[J]. 网络安全技术与应用, 2023(2): 33-35. OU Y P. Research on Weibo rumor detection based on co-attention[J]. Network Security Technology & Application, 2023(2): 33-35. [26] SONG C H, YANG C, CHEN H M, et al. CED: credible early detection of social media rumors[C]//Proceedings of the IEEE Transactions on Knowledge and Data Engineering. Piscataway: IEEE, 2021: 3035-3047. [27] 彭健, 阳小华. 一种逻辑模型树算法在网络舆情中的谣言检测[J]. 南华大学学报(自然科学版), 2018, 32(3): 43-48. PENG J, YANG X H. A logistic model tree algorithm for rumor detection in Internet public opinion[J]. Journal of University of South China (Science and Technology), 2018, 32(3): 43-48. [28] HAMIDIAN S, DIAB M T. Rumor detection and classification for twitter data[J]. arXiv:1912.08926, 2019. [29] KWON S, CHA M, JUNG K, et al. Prominent features of rumor propagation in online social media[C]//Proceedings of the 2013 IEEE 13th International Conference on Data Mining. Piscataway: IEEE, 2013: 1103-1108. [30] 尹鹏博, 彭成, 潘伟民. 基于集成学习的微博谣言早期检测[J]. 微电子学与计算机, 2021, 38(1): 83-88. YIN P B, PENG C, PAN W M. Early detection of microblog rumors based on ensemble learning[J]. Microelectronics & Computer, 2021, 38(1): 83-88. [31] MANJUNATH KUMAR T, MURUGESWARI R, DEVARAJ D, et al. Comparison of deep learning and random forest for rumor identification in social networks[C]//Proceedings of the International Conference on Innovative Computing and Communications. Singapore: Springer Singapore, 2020: 133-146. [32] YANG F, LIU Y, YU X H, et al. Automatic detection of rumor on sina Weibo[C]//Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics. New York: ACM, 2012: 1-7. [33] WU K, YANG S, ZHU K Q. False rumors detection on Sina Weibo by propagation structures[C]//Proceedings of the 2015 IEEE 31st International Conference on Data Engineering. Piscataway: IEEE, 2015: 651-662. [34] 段大高, 王长生, 韩忠明, 等. 基于微博评论的虚假消息检测模型[J]. 计算机仿真, 2016, 33(1): 386-390. DUAN D G, WANG C S, HAN Z M, et al. A rumor detection model based on Weibo’ reviews[J]. Computer Simulation, 2016, 33(1): 386-390. [35] 孙王斌. 多特征融合的可移植谣言早期检测模型[J]. 计算机时代, 2020(9): 11-16. SUN W B. Rumor early detection model with multi-feature merged and portability[J]. Computer Era, 2020(9): 11-16. [36] 祖坤琳, 赵铭伟, 郭凯, 等. 新浪微博谣言检测研究[J]. 中文信息学报, 2017, 31(3): 198-204. ZU K L, ZHAO M W, GUO K, et al. Research on the detection of rumor on sina Weibo[J]. Journal of Chinese Information Processing, 2017, 31(3): 198-204. [37] 王志宏, 过弋. 微博谣言事件自动检测研究[J]. 中文信息学报, 2019, 33(6): 132-140. WANG Z H, GUO Y. Automatic rumor event detection in Chinese microblogs[J]. Journal of Chinese Information Processing, 2019, 33(6): 132-140. [38] 张仰森, 彭媛媛, 段宇翔, 等. 基于评论异常度的新浪微博谣言识别方法[J]. 自动化学报, 2020, 46(8): 1689-1702. ZHANG Y S, PENG Y Y, DUAN Y X, et al. The method of Sina Weibo rumor detecting based on comment abnormality[J]. Acta Automatica Sinica, 2020, 46(8): 1689-1702. [39] MAAN M, JAIN M K, TRIVEDI S, et al. Machine learning based rumor detection on twitter data[C]//Proceedings of the Emerging Technologies in Computer Engineering: Cognitive Computing and Intelligent IoT (ICETCE 2022). Cham: Springer International Publishing, 2022: 259-273. [40] GUMAEI A, AL-RAKHAMI M S, HASSAN M M, et al. An effective approach for rumor detection of Arabic tweets using eXtreme gradient boosting method[J]. ACM Transactions on Asian and Low-Resource Language Information Processing, 2022, 21(1): 1-16. [41] 皮德常, 吴致远, 曹建军. 基于知识图谱表示学习的谣言早期检测方法[J]. 电子学报, 2023, 51(2): 385-395. PI D C, WU Z Y, CAO J J. Early rumor detection method based on knowledge graph representation learning[J]. Acta Electronica Sinica, 2023, 51(2): 385-395. [42] YANG F, PENTYALA S K, MOHSENI S, et al. XFake: explainable fake news detector with visualizations[C]//Proceedings of the World Wide Web Conference. New York: ACM, 2019: 3600-3604. [43] MA J, WEI G, PRASENJIT M, et al. Detecting rumors from microblogs with recurrent neural networks[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI’16), 2016: 3818-3824. [44] MA J, GAO W, WONG K F. Rumor detection on twitter with tree-structured recursive neural networks[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2018: 1980-1989. [45] 李力钊, 蔡国永, 潘角. 基于C-GRU的微博谣言事件检测方法[J]. 山东大学学报(工学版), 2019, 49(2): 102-106. LI L Z, CAI G Y, PAN J. A microblog rumor events detection method based on C-GRU[J]. Journal of Shandong University (Engineering Science), 2019, 49(2): 102-106. [46] BIAN T, XIAO X, XU T Y, et al. Rumor detection on social media with bi-directional graph convolutional networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 549-556. [47] FENG Y, QIANG L, SHU W, et al. A convolutional approach for misinformation identification[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017: 3901-3907. [48] WU Z Y, PI D C, CHEN J F, et al. Rumor detection based on propagation graph neural network with attention mechanism[J]. Expert Systems with Applications, 2020, 158: 113595. [49] JIANG J G, LIU Q, YU M, et al. Landscape-enhanced graph attention network for rumor detection[C]//Proceedings of the International conference on knowledge science, engineering and management. Cham: Springer International Publishing, 2021: 188-199. [50] GUO H, CAO J, ZHANG Y Z, et al. Rumor detection with hierarchical social attention network[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 943-951. [51] 廖祥文, 黄知, 杨定达, 等. 基于分层注意力网络的社交媒体谣言检测[J]. 中国科学: 信息科学, 2018, 48(11): 1558-1574. LIAO X W, HUANG Z, YANG D D, et al. Rumor detection in social media based on a hierarchical attention network[J]. Scientia Sinica (Informationis), 2018, 48(11): 1558-1574. [52] CHEN Y X, SUI J, HU L, et al. Attention-residual network with CNN for rumor detection[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 1121-1130. [53] LIN H Z, MA J, CHEN L L, et al. Detect rumors in microblog posts for low-resource domains via adversarial contrastive learning[J]. arXiv: 2204. 08143, 2022. [54] ZHANG H W, LIU X X, YANG Q, et al. T3RD: test-time training for rumor detection on social media[C]//Proceedings of the ACM Web Conference 2024. New York: ACM, 2024: 2407-2416. [55] XU F, FU P Y, HUANG Q, et al. Leveraging contrastive learning and knowledge distillation for incomplete modality rumor detection[C]//Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2023. Stroudsburg: ACL, 2023: 13492-13503. [56] LI J Y, FENG X, GU T L, et al. Dual-teacher de-biasing distillation framework for multi-domain fake news detection[C]//Proceedings of the 2024 IEEE 40th International Conference on Data Engineering. Piscataway: IEEE, 2024: 3627-3639. [57] 路同强, 石冰, 闫中敏, 等. 一种用于微博谣言检测的半监督学习算法[J]. 计算机应用研究, 2016, 33(3): 744-748. LU T Q, SHI B, YAN Z M, et al. Semi-supervised learning algorithm applied to microblog rumors detection[J]. Application Research of Computers, 2016, 33(3): 744-748. [58] 陈耿, 黄取治. 半监督学习的微博谣言检测分析[J]. 电脑知识与技术, 2021, 17(15): 12-13. CHEN G, HUANG Q Z. Analysis of weibo rumor detection based on semi-supervised learning[J]. Computer Knowledge and Technology, 2021, 17(15): 12-13. [59] YANG X Y, LYU Y F, TIAN T, et al. Rumor detection on social media with graph structured adversarial learning[C]//Proceedings of the 29th International Joint Conference on International Joint Conferences on Artificial Intelligence Organization, 2020: 1417-1423. [60] CHEN W L, ZHANG Y, YEO C K, et al. Unsupervised rumor detection based on users’ behaviors using neural networks[J]. Pattern Recognition Letters, 2018, 105: 226-233. [61] LI Y, PAN Q, WANG S H, et al. Disentangled variational auto-encoder for semi-supervised learning[J]. Information Sciences, 2019, 482: 73-85. [62] ZHANG Y, CHEN W L, YEO C K, et al. Detecting rumors on Online Social Networks using multi-layer autoencoder[C]//Proceedings of the 2017 IEEE Technology & Engineering Management Conference. Piscataway: IEEE, 2017: 437-441. [63] 凤丽洲, 刘馥榕, 王友卫. 基于图卷积网络和注意力机制的谣言检测方法[J]. 数据分析与知识发现, 2024, 8(4): 125-136. FENG L Z, LIU F R, WANG Y W. Detecting rumor based on graph convolution network and attention mechanism[J]. Data Analysis and Knowledge Discovery, 2024, 8(4): 125-136. [64] 刘勘, 杜好宸. 基于深度迁移网络的Twitter谣言检测研究[J]. 数据分析与知识发现, 2019, 3(10): 47-55. LIU K, DU H C. Detecting twitter rumors with deep transfer network[J]. Data Analysis and Knowledge Discovery, 2019, 3(10): 47-55. [65] FANG L T, FENG K Y, ZHAO K Q, et al. Unsupervised rumor detection based on propagation tree VAE[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(10): 10309-10323. [66] ALZANIN S M, AZMI A M. Rumor detection in Arabic tweets using semi-supervised and unsupervised expectation-maximization[J]. Knowledge-Based Systems, 2019, 185: 104945. [67] 贾惠, 伍希志, 薛洋, 等. 基于迁移学习和数据增强的小样本柑橘缺陷检测研究[J]. 农业与技术, 2024, 44(2): 23-27. JIA H, WU X Z, XUE Y, et al. Research on defect detection of small sample citrus based on transfer learning and data enhancement[J]. Agriculture and Technology, 2024, 44(2): 23-27. [68] LU H Y, FAN C Y, SONG X N, et al. A novel few-shot learning based multi-modality fusion model for COVID-19 rumor detection from online social media[J]. PeerJ Computer Science, 2021, 7: e688. [69] LI H, YANG W, WANG H R, et al. FSRD: few-shot fuzzy rumor detection system with stance-enhanced prompt learning[J]. Soft Computing, 2024(1): 1-15. [70] CHEN D, CHEN X L, LU P, et al. CNFRD: a few-shot rumor detection framework via capsule network for COVID-19[J]. International Journal of Intelligent Systems, 2023, 2023(1): 2467539. [71] LAMPERT C H, NICKISCH H, HARMELING S. Learning to detect unseen object classes by between-class attribute transfer[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 951-958. [72] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016. [73] FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proceedings of the 34th International Conference on Machine Learning (ICML 2017), 2017: 1126-1135. [74] 乔禹涵, 贾彩燕. 基于图自监督对比学习的社交媒体谣言检测[J]. 南京大学学报(自然科学), 2023, 59(5): 823-832. QIAO Y H, JIA C Y. Rumor detection on social media based on graph contrastive self-supervised learning[J]. Journal of Nanjing University (Natural Science), 2023, 59(5): 823-832. [75] XIAN Y Q, SHARMA S, SCHIELE B, et al. F-VAEGAN-D2: a feature generating framework for any-shot learning[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 10267-10276. [76] LIN T, ZHANG X Z, Lau J H. Rumour detection via zero-shot cross-lingual transfer learning[J]. arXiv:2109.12773, 2021. [77] LIN H Z, YI P Y, MA J, et al. Zero-shot rumor detection with propagation structure via prompt learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2023: 5213-5221. [78] JIN Z W, CAO J, GUO H, et al. Multimodal fusion with recurrent neural networks for rumor detection on microblogs[C]//Proceedings of the 25th ACM International Conference on Multimedia. New York: ACM, 2017: 795-816. [79] KHATTAR D, GOUD J S, GUPTA M, et al. MVAE: multimodal variational autoencoder for fake news detection[C]//Proceedings of the World Wide Web Conference. New York: ACM, 2019: 2915-2921. [80] 刘金硕, 冯阔, PAN J Z, 等. MSRD: 多模态网络谣言检测方法[J]. 计算机研究与发展, 2020, 57(11): 2328-2336. LIU J S, FENG K, PAN J, et al. MSRD: multi-modal web rumor detection method[J]. Journal of Computer Research and Development, 2020, 57(11): 2328-2336. [81] KALIYAR R K, GOSWAMI A, NARANG P. FakeBERT: fake news detection in social media with a BERT-based deep learning approach[J]. Multimedia Tools and Applications, 2021, 80(8): 11765-11788. [82] 苏孟丽. 基于图文融合的谣言识别方法研究[D]. 济南: 齐鲁工业大学, 2023. SU M L. Research on rumor recognition method based on image-text fusion[D]. Jinan: Qilu University of Technology, 2023. [83] QI P, BU Y Y, CAO J, et al. FakeSV: a multimodal benchmark with rich social context for fake news detection on short video platforms[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2023: 14444-14452. [84] CHOI H, KO Y. Using topic modeling and adversarial neural networks for fake news video detection[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 2950-2954. [85] SHANG L Y, KOU Z Y, ZHANG Y, et al. A multimodal misinformation detector for COVID-19 short videos on TikTok[C]//Proceedings of the 2021 IEEE International Conference on Big Data. Piscataway: IEEE, 2021: 899-908. [86] LIU F X, YACOOB Y, SHRIVASTAVA A. COVID-VTS: fact extraction and verification on short video platforms[J]. arXiv:2302.07919, 2023. [87] YANG Y X, ZHAO J H, WANG S Y, et al. Multimodal short video rumor detection system based on contrastive learning[J]. arXiv:2304.08401, 2023. [88] AWAL M R, NGUYEN M D, LEE R K, et al. MUSCAT: multilingual rumor detection in social media conversations[C]//Proceedings of the 2022 IEEE International Conference on Big Data. Piscataway: IEEE, 2022: 455-464. [89] ACHIAM J, ADLER S, AGARWAL S, et al. GPT-4 technical report[J]. arXiv:2303.08774, 2023. [90] GLM T, ZENG A, XU B, et al. ChatGLM: a family of large language models from GLM-130B to GLM-4 all tools[J]. arXiv:2406.12793, 2024. [91] CHOWDHERY A, NARANG S R, DEVLIN J, et al. PaLM: scaling language modeling with pathways[J]. arXiv:2204. 02311, 2022. [92] WAN H R, FENG S B, TAN Z X, et al. DELL: generating reactions and explanations for LLM-based misinformation detection[J]. arXiv:2402.10426, 2024. [93] HU B Z, SHENG Q, CAO J, et al. Bad actor, good advisor: exploring the role of large language models in fake news detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2024: 22105-22113. [94] CHEN C Y, SHU K. Can LLM-generated misinformation be detected? [J]. arXiv:2309.13788, 2023. [95] LIU Q, TAO X, WU J F, et al. Can large language models detect rumors on social media? [J]. arXiv:2402.03916, 2024. [96] PAVLYSHENKO B M. Analysis of disinformation and fake news detection using fine-tuned large language model[J]. arXiv:2309.04704, 2023. [97] LAI J Q, YANG X R, LUO W Y, et al. RumorLLM: a rumor large language model-based fake-news-detection data-augmentation approach[J]. Applied Sciences, 2024, 14(8): 3532. [98] YANG C, ZHANG P, QIAO W B, et al. Rumor detection on social media with crowd intelligence and ChatGPT-assisted networks[C]//Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2023: 5705-5717. [99] PELRINE K, IMOUZA A, THIBAULT C, et al. Towards reliable misinformation mitigation: generalization, uncertainty, and GPT-4[J]. arXiv:2305.14928, 2023. [100] HUANG Y, SUN L C. Harnessing the power of chatgpt in fake news: an in-depth exploration in generation, detection and explanation[J]. arXiv:2310.05046, 2023. [101] YAN Y Q, ZHENG P, WANG Y J. Enhancing large language model capabilities for rumor detection with knowledge-powered prompting[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 108259. [102] ZHAO Z, RESNICK P, MEI Q Z. Enquiring minds: early detection of rumors in social media from enquiry posts[C]//Proceedings of the 24th International Conference on World Wide Web, 2015: 1395-1405. [103] NI S W, LI J W, KAO H Y. HAT4RD: hierarchical adversarial training for rumor detection in social media[J]. Sensors, 2022, 22(17): 6652. [104] CHEN H, ZHANG, S, CHEN J. ARMA: adversarial rumor message attention model for early detection[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019. [105] KAI S, ZHOU X Y, WANG S Q. Graph attention networks with adversarial training for rumor detection[C]//Proceedings of the International Conference on Information and Knowledge Management, 2019. [106] 杨洁. 社交网络中基于深度学习的谣言检测方法研究[D]. 扬州: 扬州大学, 2024. YANG J. Research on rumor detection method based on deep learning in social network[D]. Yangzhou: Yangzhou University, 2024. [107] 蒋超, 朱学芳. 基于模态融合增强的谣言检测研究[J/OL]. 数据分析与知识发现, 2024: 1-18[2024-08-22]. https://kns.cnki.net/kcms/detail/10.1478.g2.20240821.1428.010.html. JIANG C, ZHU X F. Research on rumor detection based on modal fusion enhancement[J/OL]. Data Analysis and Knowledge Discovery, 2024: 1-18[2024-08-22]. https://kns.cnki.net/kcms/detail/10.1478.g2.20240821.1428.010.html. [108] 李新叶, 龙慎鹏, 朱婧. 基于深度神经网络的少样本学习综述[J]. 计算机应用研究, 2020, 37(8): 2241-2247. LI X Y, LONG S P, ZHU J. Survey of few-shot learning based on deep neural network[J]. Application Research of Computers, 2020, 37(8): 2241-2247. |
| [1] | 杨书新, 丁祺伟. 基于局部和全局特征聚合的虚假新闻检测方法[J]. 计算机工程与应用, 2025, 61(9): 139-147. |
| [2] | 颜政锦, 叶正, 葛君. 多模态预训练模型在金融票据信息抽取中的应用[J]. 计算机工程与应用, 2025, 61(9): 186-193. |
| [3] | 董磊, 吴福居, 史健勇, 潘龙飞. 基于大语言模型的施工安全多模态知识图谱的构建与应用[J]. 计算机工程与应用, 2025, 61(9): 325-333. |
| [4] | 吴波, 张荣芬, 刘宇红. 改进ViT的RGB-T多模态交互跟踪算法研究[J]. 计算机工程与应用, 2025, 61(7): 267-277. |
| [5] | 黄德启, 黄海峰, 黄德意, 刘振航. BEV感知学习在自动驾驶中的应用综述[J]. 计算机工程与应用, 2025, 61(6): 1-21. |
| [6] | 郭小宇, 马静, 陈杰. 多模态分级特征映射与融合表征方法研究[J]. 计算机工程与应用, 2025, 61(6): 171-182. |
| [7] | 杨广浩, 万书振, 董方敏, 王梦园. 基于时间步局部动态交互的多任务谣言检测方法[J]. 计算机工程与应用, 2025, 61(6): 183-191. |
| [8] | 潘惟兰, 张荣芬, 刘宇红, 张吉友, 孙龙. 结合CNN-Transformer的跨模态透明物体分割[J]. 计算机工程与应用, 2025, 61(4): 222-229. |
| [9] | 张换香, 李梦云, 张景. 基于多模态信息融合的中文隐式情感分析[J]. 计算机工程与应用, 2025, 61(2): 179-190. |
| [10] | 赵嘉, 钟劲文, 肖人彬, 王晖, 潘正祥. 随机游走和特殊拥挤距离更新的多模态多目标狼群算法[J]. 计算机工程与应用, 2025, 61(12): 93-106. |
| [11] | 焦世明, 于凯. 多领域多模态融合网络的虚假新闻检测[J]. 计算机工程与应用, 2025, 61(11): 238-248. |
| [12] | 周欣颖, 李雷孝, 林浩, 张虎成. 多模态驾驶员情绪识别研究综述[J]. 计算机工程与应用, 2025, 61(10): 1-18. |
| [13] | 赵京胜, 王永政, 杨心怡, 曲维龙, 朱巧明. 专家路由的方面级多模态情感分析[J]. 计算机工程与应用, 2025, 61(10): 155-165. |
| [14] | 黄施洋, 奚雪峰, 崔志明. 大模型时代下的汉语自然语言处理研究与探索[J]. 计算机工程与应用, 2025, 61(1): 80-97. |
| [15] | 李佳泽, 梅红岩, 贾丽云, 李文娅. 动态时间序列建模的多模态情感识别方法[J]. 计算机工程与应用, 2025, 61(1): 196-205. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||