计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (12): 93-106.DOI: 10.3778/j.issn.1002-8331.2408-0091

• 理论与研发 • 上一篇    下一篇

随机游走和特殊拥挤距离更新的多模态多目标狼群算法

赵嘉,钟劲文,肖人彬,王晖,潘正祥   

  1. 1.南昌工程学院 信息工程学院,南昌 330099
    2.南昌工程学院 南昌市智慧城市物联感知与协同计算重点实验室,南昌 330099
    3.华中科技大学 人工智能与自动化学院,武汉 430074
    4.南京信息工程大学 人工智能学院,南京 210044
  • 出版日期:2025-06-15 发布日期:2025-06-13

Multi-Modal Multi-Objective Wolf Pack Algorithm with Random Wandering and Special Crowding Distance

ZHAO Jia, ZHONG Jinwen, XIAO Renbin, WANG Hui, PAN Jeng-shyang   

  1. 1.School of Information Engineering, Nanchang Institute of Technology, Nanchang 330099, China
    2.Nanchang Key Laboratory of IoT Perception and Collaborative Computing for Smart City, Nanchang Institute of Technology, Nanchang 330099, China
    3.School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
    4.School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China
  • Online:2025-06-15 Published:2025-06-13

摘要: 针对多模态多目标优化中种群多样性较差和搜索能力不足的问题,提出随机游走和特殊拥挤距离更新的多模态多目标狼群算法(MMOWPA-RSCD)。在游走行为中融入莱维飞行,提出随机游走策略,生成多个随机突变的游走位置,使种群快速跳出局部最优,增强算法的全局搜索能力;设计基于特殊拥挤距离的种群更新机制,利用k-means算法将待更新种群划分为多个子种群以降低整体搜索难度,通过计算各个子种群个体的特殊拥挤距离,保留决策空间和目标空间综合拥挤度较好的解,维持种群的多样性;引入环境选择策略,通过特殊拥挤距离非支配排序筛选优良种群,进一步提升算法的多样性。将MMOWPA-RSCD算法和8种经典以及新近多模态多目标优化算法在13个多模态多目标测试函数进行实验对比及秩均值检验,实验结果表明:MMOWPA-RSCD的总体性能优于对比算法。将算法用于栅格地图路径规划问题,进一步验证了算法的有效性。

关键词: 多模态多目标优化, 多目标狼群算法, 随机游走, 特殊拥挤距离更新, 环境选择, 栅格地图路径规划

Abstract: To address the issues of low population diversity and inadequate search capability in multi-modal multi-objective optimization, multi-modal multi-objective wolf pack algorithm with random wandering and special crowding distance (MMOWPA-RSCD) is proposed. By integrating Lévy’s flights into the wandering behavior, a random walk strategy is introduced to generate multiple randomly mutated positions, allowing the population to rapidly escape local optima and enhancing the global search capability of the algorithm. Population update mechanism based on special crowding distance is designed, the k-means algorithm is used to partition the population into several subpopulations to reduce overall search difficulty. By calculating the special crowding distance of individuals within each subpopulation, solutions with better comprehensive crowding degrees in both decision and objective spaces are retained, maintaining population diversity. Finally, an environmental selection strategy is introduced, using special crowding distance non-dominated sorting to select superior populations, further enhancing the diversity of the algorithm. The MMOWPA-RSCD algorithm is experimentally compared with eight recent multi-modal multi-objective optimization algorithms across 13 multi-modal multi-objective test functions, including rank mean value testing. Experimental results indicate that the overall performance of MMOWPA-RSCD surpasses that of the comparison algorithms. Lastly, the algorithm is applied to a grid map path planning problem to further validate its effectiveness.

Key words: multi-modal multi-objective optimization, multi-objective wolf pack algorithm, random wandering, special crowding distance update, environmental selection, grid map path planning