[1] 赵嘉, 赖智臻, 吴润秀, 等. 层级引导的增强型多目标萤火虫算法[J]. 系统仿真学报, 2024, 36(5): 1152-1164.
ZHAO J, LAI Z Z, WU R X, et al. Hierarchical guided enhanced multi-objective firefly algorithm[J]. Journal of System Simulation, 2024, 36(5): 1152-1164.
[2] DEB K, TIWARI S. Omni-optimizer: a procedure for single and multi-objective optimization[C]//Proceedings of the International Confereren on Evolutionary Multi-Criterion Optimization. Berlin, Heidelberg: Springer, 2005: 47-61.
[3] PéREZ E, POSADA M, HERRERA F. Analysis of new niching genetic algorithms for finding multiple solutions in the job shop scheduling[J]. Journal of Intelligent Manufacturing, 2012, 23(3): 341-356.
[4] MIAO Z H, HUANG W T, JIANG Q C, et al. A novel multimodal multi-objective optimization algorithm for multi-robot task allocation[J]. Transactions of the Institute of Measurement and Control, 2023: 01423312231183588.
[5] ZHANG W Z, LI G Q, ZHANG W W, et al. A cluster based PSO with leader updating mechanism and ring-topology for multimodal multi-objective optimization[J]. Swarm and Evolutionary Computation, 2019, 50: 100569.
[6] TIAN Y, LIU R C, ZHANG X Y, et al. A multipopulation evolutionary algorithm for solving large?scale multimodal multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(3): 405-418.
[7] LIANG J, QIAO K J, YUE C T, et al. A clustering-based differential evolution algorithm for solving multimodal multi-objective optimization problems[J]. Swarm and Evolutionary Computation, 2021, 60: 100788.
[8] QU B Y, SUGANTHAN P N, DAS S. A distance-based locally informed particle swarm model for multimodal optimization[J]. IEEE Transactions on Evolutionary Computation, 2013, 17(3): 387-402.
[9] LIANG J J, YUE C T, QU B Y. Multimodal multi-objective optimization: a preliminary study[C]//Proceedings of the 2016 IEEE Congress on Evolutionary Computation. Piscataway: IEEE, 2016: 2454-2461.
[10] YUE C T, QU B Y, LIANG J. A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems[J]. IEEE Transactions on Evolutionary Computation, 2018, 22(5): 805-817.
[11] LIU Y P, YEN G G, GONG D W. A multimodal multiobjective evolutionary algorithm using two-archive and recombination strategies[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(4): 660-674.
[12] LIANG J, XU W W, YUE C T, et al. Multimodal multiobjective optimization with differential evolution[J]. Swarm and Evolutionary Computation, 2019, 44: 1028-1059.
[13] WU H S, ZHANG F M. Wolf pack algorithm for unconstrained global optimization[J]. Mathematical Problems in Engineering, 2014, 2014(1): 465082.
[14] XIAO R B. Four development stages of collective intelligence[J]. Frontiers of Information Technology & Electronic Engineering, 2024, 25(7): 903-916.
[15] XIU-WU Y U, HAO Y U, LIU Y, et al. A clustering routing algorithm based on wolf pack algorithm for heterogeneous wireless sensor networks[J]. Computer Networks, 2020, 167: 106994.
[16] ZHANG L Y, ZHANG L, LIU S, et al. Three-dimensional underwater path planning based on modified wolf pack algorithm[J]. IEEE Access, 2017, 5: 22783-22795.
[17] 李昌响, 赵嘉, 韩龙哲, 等. 多通道CNN-BiLSTM的短时温度预测[J]. 江西师范大学学报 (自然科学版), 2023, 47(3): 325-330.
LI C X, ZHAO J, HAN L Z, et al. The short-time temperature prediction for multi-channel CNN-BiLSTM[J]. Journal of Jiangxi Normal University (Natural Science Edition), 2023, 47(3): 325-330.
[18] 颜学龙, 丁鹏, 马峻. 基于狼群算法的RBF神经网络模拟电路故障诊断[J]. 计算机工程与应用, 2017, 53(19): 152-156.
YAN X L, DING P, MA J. Analog circuit diagnosis based on wolf pack algorithm radical basis function network[J]. Computer Engineering and Applications, 2017, 53(19): 152-156.
[19] 谢锐强, 张惠珍. 求解柔性作业车间调度问题的两段式狼群算法[J]. 计算机工程与应用, 2021, 57(7): 251-256.
XIE R Q, ZHANG H Z. Two-vector wolf pack algorithm for flexible job shop scheduling problem[J]. Computer Engineering and Applications, 2021, 57(7): 251-256.
[20] 荀洪凯, 陶翼飞, 张源, 等. 多目标启发式狼群算法求解不相关并行机分批调度问题[J]. 信息与控制, 2023, 52(1): 93-103.
XUN H K, TAO Y F, ZHANG Y, et al. Multi-objective heuristic wolf pack algorithm for unrelated parallel machine batch scheduling problem[J]. Information and Control, 2023, 52(1): 93-103.
[21] 陶翼飞, 丁小鹏, 罗俊斌, 等. 基于多目标狼群算法的机场行李导入系统仿真优化研究[J]. 系统仿真学报, 2024, 36(7): 1655-1669.
TAO Y F, DING X P, LUO J B, et al. Simulation optimization of airport baggage import system based on multi-objective wolf pack algorithm[J]. Journal of System Simulation, 2024, 36(7): 1655-1669.
[22] 赵嘉,吕丰,肖人彬, 等.自适应分组和拥挤距离更新的多目标狼群算法[J].控制与决策, 2024,39(11):3772-3780.
ZHAO J, LV F, XIAO R B, et al. Multi-objective wolf pack algorithm based on adaptive grouping strategy and crowding distance [J]. Control and Decision, 2024,39(11):3772-3780.
[23] 丁瑞成, 周玉成. 引入莱维飞行与动态权重的改进灰狼算法[J]. 计算机工程与应用, 2022, 58(23): 74-82.
DING R C, ZHOU Y C. Improved grey wolf optimization algorithm based on levy flight and dynamic weight strategy[J]. Computer Engineering and Applications, 2022, 58(23): 74-82.
[24] 潘成胜, 张斌, 吕亚娜, 等. 改进灰狼优化算法的K-Means文本聚类[J]. 计算机工程与应用, 2021, 57(1): 188-193.
PAN C S, ZHANG B, LYU Y N, et al. K-means text clustering based on improved gray wolf optimization algorithm[J]. Computer Engineering and Applications, 2021, 57(1): 188-193.
[25] ZITZLER E, LAUMANNS M, THIELE L. SPEA2: improving the strength Pareto evolutionary algorithm[R]. TIK Report 103, 2001.
[26] RUDOLPH G, NAUJOKS B, PREUSS M. Capabilities of EMOA to detect and preserve equivalent Pareto subsets[C]//Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization. Berlin, Heidelberg: Springer, 2007: 36-50.
[27] 岳彩通, 梁静, 瞿博阳, 等. 多模态多目标优化综述[J]. 控制与决策, 2021, 36(11): 2577-2588.
YUE C T, LIANG J, QU B Y, et al. A survey on multimodal multiobjective optimization[J]. Control and Decision, 2021, 36(11): 2577-2588.
[28] ZITZLER E, THIELE L, LAUMANNS M, et al. Performance assessment of multiobjective optimizers: an analysis and review[J]. IEEE Transactions on Evolutionary Computation, 2003, 7(2): 117-132.
[29] LI W H, ZHANG T, WANG R, et al. Weighted indicator-based evolutionary algorithm for multimodal multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(6): 1064-1078.
[30] LI W H, YAO X Y, ZHANG T, et al. Hierarchy ranking method for multimodal multiobjective optimization with local Pareto fronts[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(1): 98-110.
[31] MING F, GONG W Y, WANG L, et al. Balancing convergence and diversity in objective and decision spaces for multimodal multi-objective optimization[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 7(2): 474-486.
[32] LI W H, YAO X Y, LI K W, et al. Coevolutionary framework for generalized multimodal multi-objective optimization[J]. IEEE/CAA Journal of Automatica Sinica, 2023, 10(7): 1544-1556.
[33] MING F, GONG W Y, JIN Y C. Growing neural gas network-based surrogate-assisted Pareto set learning for multimodal multi-objective optimization[J]. Swarm and Evolutionary Computation, 2024, 87: 101541.
[34] 吕莉, 陈威, 肖人彬, 等. 面向密度分布不均数据的加权逆近邻密度峰值聚类算法[J]. 智能系统学报, 2024, 19(1): 165-175.
LYU L, CHEN W, XIAO R B, et al. Density peak clustering algorithm based on weighted reverse nearest neighbor for uneven density datasets[J]. CAAI Transactions on Intelligent Systems, 2024, 19(1): 165-175.
[35] 赵嘉, 谢智峰, 吕莉, 等. 深度学习萤火虫算法[J]. 电子学报, 2018, 46(11): 2633-2641.
ZHAO J, XIE Z F, Lü L, et al. Firefly algorithm with deep learning[J]. Acta Electronica Sinica, 2018, 46(11): 2633-2641. |