[1] 刘苏毅, 迟剑宁, 吴成东, 等. 基于递归切片网络的三维点云语义分割与实例分割[J]. 中国图象图形学报, 2023, 28(7): 2135-2150.
LIU S Y, CHI J N, WU C D, et al. Semantic segmentation and case segmentation of three-dimensional point cloud based on recursive slicing network[J]. Journal of Image and Graphics, 2023, 28(7): 2135-2150.
[2] 徐昕. 面向室内场景的三维实例分割方法研究[D]. 大庆: 东北石油大学, 2023.
XU X. Research on 3D case segmentation method for indoor scene[D]. Daqing: Northeast Petroleum University, 2023.
[3] 卢健, 贾旭瑞, 周健, 等. 基于深度学习的三维点云分割综述[J]. 控制与决策, 2023, 38(3): 595-611.
LU J, JIA X R, ZHOU J, et al. Review of 3D point cloud segmentation based on deep learning[J]. Control and Decision, 2023, 38(3): 595-611.
[4] 刘鹏. 基于类别信息和方向信息的多任务三维点云实例分割算法研究[D]. 武汉: 华中科技大学, 2022.
LIU P. Research on multi-task 3D point cloud instance segmentation algorithm based on category information and direction information[D]. Wuhan: Huazhong University of Science and Technology, 2022.
[5] 张扬. 三维场景融合补全实例分割的研究[D]. 成都: 电子科技大学, 2022.
ZHANG Y. Research on case segmentation of three-dimensional scene fusion and completion[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
[6] 刘长吉, 郝志成, 杨锦程, 等. 基于实例分割的目标三维位置估计方法[J]. 液晶与显示, 2021, 36(11): 1535-1544.
LIU C J, HAO Z C, YANG J C, et al. 3D target position estimation method based on case segmentation[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(11): 1535-1544.
[7] 李东威. 基于深度学习的三维实例分割技术研究[D]. 长沙: 湖南大学, 2021.
LI D W. Research on 3D instance segmentation technology based on deep learning[D]. Changsha: Hunan University, 2021.
[8] 黄漫, 黄勃, 高永彬. 引入深度补全与实例分割的三维目标检测[J]. 传感器与微系统, 2021, 40(1): 129-132.
HUANG M, HUANG B, GAO Y B. 3D object detection with deep completion and case segmentation[J]. Sensors & Microsystems, 2021, 40(1): 129-132.
[9] 顾军华, 李炜, 董永峰. 基于点云数据的分割方法综述[J]. 燕山大学学报, 2020, 44(2): 125-137.
GU J H, LI W, DONG Y F. Review of segmentation methods based on point cloud data[J]. Journal of Yanshan University, 2020, 44(2): 125-137.
[10] WANG W Y, YU R, HUANG Q G. SGPN: similarity group proposal network for 3D point cloud instance segmentation[J]. arXiv:1711.08588, 2017.
[11] YANG B, WANG J, CLARK R, et al. Learning object bounding boxes for 3D instance segmentation on point clouds[C]//Proceedings of the 33rd Conference on Neural Information Processing Systems, 2019: 1-10.
[12] HAN L, ZHENG T, LAN X, et al. OccuSeg: occupancy-aware 3D instance segmentation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2937-2946.
[13] JIANG L, ZHAO H, SHI S, et al. PointGroup: dual-set point grouping for 3D instance segmentation[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2020: 4866-4875.
[14] CHEN S Y, FANG J M, ZHANG Q, et al. Hierarchical aggregation for 3D instance segmentation[J]. arXiv:2108. 02350, 2021.
[15] HE T, SHEN C, HENGEL V D A. DyCO3D: robust instance segmentation of 3D point clouds through dynamic convolution[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2021: 354-363.
[16] GRAHAM B, ENGELCKE M, MAATEN V D L. 3D semantic segmentation with submanifold sparse convolutional networks[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2018: 9224-9232.
[17] JACOBS R A, JORDAN M I, NOWLAN S J, et al. Adaptive mixtures of local experts[J]. Neural Computation, 1991, 3(1): 79-87.
[18] GU A, DAO T. Mamba: linear-time sequence modeling with selective state spaces[J]. arXiv:2312.00752, 2023.
[19] RUBY U, YENDAPALLI V. Binary cross entropy with deep learning technique for Image classification[J]. International Journal of Advanced Trends in Computer Science and Engineering, 2020, 9(4): 5393-5397.
[20] LI X, SUN X, MENG Y, et al. Dice loss for data-imbalanced NLP tasks[C]//Proceedings of the Annual Meeting of the Association for Computational Linguistics, 2020: 465-476.
[21] DAI A, CHANG A X, SAVVA M, et al. ScanNet: richly-annotated 3D reconstructions of indoor scenes[C]//Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2432-2443.
[22] THABET A, ALWASSEL H, GHANEM B. Self-supervised learning of local features in 3D point clouds[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2020: 4048-4052. |