计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (8): 194-203.DOI: 10.3778/j.issn.1002-8331.2405-0054

• 图形图像处理 • 上一篇    下一篇

基于Mamba的轻量级三维点云实例分割算法

崔丽群,郝思雅,栾五洋   

  1. 1.辽宁工程技术大学 软件学院,辽宁 葫芦岛 125105
    2.中国民用航空飞行学院 计算机学院,四川 德阳 618307
  • 出版日期:2025-04-15 发布日期:2025-04-15

Lightweight 3D Point Cloud Instance Segmentation Algorithm Based on Mamba

CUI Liqun, HAO Siya, LUAN Wuyang   

  1. 1.College of Software, Liaoning Technical University, Huludao, Liaoning 125105, China
    2.School of Computing, Civil Aviation Flight University of China, Deyang, Sichuan 618307, China
  • Online:2025-04-15 Published:2025-04-15

摘要: 针对三维点云实例分割中的特征提取能力的不足、实例边缘的模糊性,以及在复杂场景中的实例识别困难的问题,提出了一种基于Mamba的轻量级三维点云实例分割算法。利用稀疏3D U-Net高效地对点云数据进行特征提取。为了增强模型对复杂场景的学习能力,进一步采用最远距离采样和球形查询聚类特征在节省计算量同时对信息进行二次提炼,这些处理后的特征利用混合专家模型最有效分配给不同专家网络,最后送入高效SSM模块,实现实例的精确查询。在ScanNetV2数据集上,取得了52.8%的mAP,并且在S3DIS等点云室内场景数据集上表现出优势,运行速率达到210?ms,实现了轻量级的优化。

关键词: 点云实例分割, 最远距离采样, 球查询

Abstract: Aiming at the shortage of feature extraction ability, the ambiguity of instance edge and the difficulty of instance recognition in complex scenes, a lightweight 3D point cloud instance segmentation algorithm based on Mamba is proposed. Firstly, sparse 3D U-Net is used to extract features from point cloud data efficiently. Secondly, in order to enhance the learning ability of the model for complex scenes, the farthest distance sampling and spherical query clustering features are further adopted to save computation and refine the information twice. These processed features are most effectively allocated to different expert networks using the hybrid expert model, and finally sent into the efficient SSM module to achieve accurate query of instances. Finally, on the ScanNetV2 dataset, the mAP of 52.8% is obtained, and the performance advantage is achieved on the S3DIS and other point cloud indoor scene data sets, and the running time is 210?ms, which helps to achieve lightweight optimization.

Key words: point cloud instance segmentation, farthest distance sampling, ball query