计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (4): 43-58.DOI: 10.3778/j.issn.1002-8331.2402-0156
李彦,万征
出版日期:
2025-02-15
发布日期:
2025-02-14
LI Yan, WAN Zheng
Online:
2025-02-15
Published:
2025-02-14
摘要: 在产业视频时代下,边缘计算、人工智能技术的迅猛发展,催生了边缘智能,基于边缘计算网络的视频传输优化研究迎来了新机遇。在总结边缘视频传输优化内容的基础上,梳理深度强化学习等人工智能技术应用于边缘视频传输优化的研究与进展情况;提出边缘智能视频传输优化概念,给出面向网络QoS的边缘智能视频传输优化和面向用户QoE的边缘智能视频传输优化的方法分类,并分别进行详细阐述;研究分析目前边缘视频传输优化仍然存在的主要问题,通过寻找规律,分析不足,突出优势,指出边缘智能视频传输优化未来的热点研究方向。
李彦, 万征. 深度强化学习在边缘视频传输优化中的应用综述[J]. 计算机工程与应用, 2025, 61(4): 43-58.
LI Yan, WAN Zheng. Survey on Applications of Deep Reinforcement Learning in Edge Video Transmission Optimization[J]. Computer Engineering and Applications, 2025, 61(4): 43-58.
[1] JEDARI B, PREMSANKAR G, ILLAHI G, et al. Video caching, analytics, and delivery at the wireless edge: a survey and future directions[J]. IEEE Communications Surveys & Tutorials, 2021, 23(1): 431-471. [2] KHAN M A, BACCOUR E, CHKIRBENE Z, et al. A survey on mobile edge computing for video streaming: opportunities and challenges[J]. IEEE Access, 2022, 10: 120514-120550. [3] Sandvine. The global Internet phenomena report[EB/OL]. (2023-01-01)[2024-01-31]. https://www.sandvine.com/global-internet-phenomena-report-2023-download?submissionGuid=08d3ad44-1785-4995-8234-856d1fbdaa6b. [4] 中国互联网络信息中心 (CNNIC). 中国互联网络发展状况统计报告[EB/OL]. (2023-08-28)[2024-01-31]. https://cnnic.cn/n4/2023/0828/c88-10829.html. China Internet Network Information Center (CNNIC). The statistical report on Internet development in China[EB/OL]. (2023-08-28)[2024-01-31]. https://cnnic.cn/n4/2023/0828/c88-10829.html. [5] 吴冀衍, 程渤, 南国顺, 等. 面向异构无线网移动视频传输的联合信源信道编码方式[J]. 计算机学报, 2015, 38(2): 439-454. WU J Y, CHENG B, NAN G S, et al. A novel joint source-channel coding scheme for mobile video delivery in heterogeneous wireless networks[J]. Chinese Journal of Computers, 2015, 38(2): 439-454. [6] HU Y, PATEL M, SABELLA D, et al. Mobile edge computing—a key technology towards 5G[J]. ETSI White Paper, 2015, 11: 1-16. [7] TALEB T, SAMDANIS K, MADA B, et al. On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1657-1681. [8] WANG X, HAN Y, LEUNG V C M, et al. Convergence of edge computing and deep learning: a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 869-904. [9] WANG X, HAN Y, LEUNG V C M, et al. Edge AI: convergence of edge computing and artificial intelligence[M]. Singapore: Springer, 2020: 51-134. [10] WANG S, ZHANG X, ZHANG Y, et al. A survey on mobile edge networks: convergence of computing, caching and communications[J]. IEEE Access, 2017, 5: 6757-6779. [11] LI X, WANG X, WAN P J, et al. Hierarchical edge caching in device-to-device aided mobile networks: modeling, optimization, and design[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(8): 1768-1785. [12] GUAN Y, ZHANG X, GUO Z. PrefCache: edge cache admission with user preference learning for video content distribution[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(4): 1618-1631. [13] LI C, TONI L, ZOU J, et al. QoE-driven mobile edge caching placement for adaptive video streaming[J]. IEEE Transactions on Multimedia, 2018, 20(4): 965-984. [14] CUI L, NI E, ZHOU Y, et al. Towards real-time video caching at edge servers: a cost-aware deep Q-learning solution[J]. IEEE Transactions on Multimedia, 2021, 25: 302-314. [15] ULLAH S, LEANH T, NDIKUMANA A, et al. Layered video communication in ICN enabled cellular network with D2D communication[C]//Proceedings of the 2017 19th Asia-Pacific Network Operations and Management Symposium. Piscataway: IEEE, 2017: 199-204. [16] DA S MORAES F, CARDOSO K V, BORGES V C M. Improving video content access with proactive D2D caching and online social networking[C]//Proceedings of the 2017 IEEE Symposium on Computers and Communications. Piscataway: IEEE, 2017: 1043-1048. [17] ANJUM N, BAHAEI M S. Evaluation of availability of initial-segments of video files in device-to-device (D2D) network[C]//Proceedings of the 2017 International Conference on Wireless Networks and Mobile Communications. Piscataway: IEEE, 2017: 1-7. [18] CAO Y, CHEN X, JIANG T, et al. SoCast: social ties based cooperative video multicast[C]//Proceedings of the 2014 IEEE Conference on Computer Communications. Piscataway: IEEE, 2014: 415-423. [19] LIU M, YU F R, TENG Y, et al. Distributed resource allocation in blockchain-based video streaming systems with mobile edge computing[J]. IEEE Transactions on Wireless Communications, 2019, 18(1): 695-708. [20] WANG D, PENG Y, MA X, et al. Adaptive wireless video streaming based on edge computing: opportunities and approaches[J]. IEEE Transactions on Services Computing, 2019, 12(5): 685-697. [21] XU X, LIU J, TAO X. Mobile edge computing enhanced adaptive bitrate video delivery with joint cache and radio resource allocation[J]. IEEE Access, 2017, 5: 16406-16415. [22] HUNG Y H, WANG C Y, HWANG R H. Combinatorial clock auction for live video streaming in mobile edge computing[C]//Proceedings of the 2018 IEEE Conference on Computer Communications Workshops. Piscataway: IEEE, 2018: 196-201. [23] PEDERSEN H A, DEY S. Enhancing mobile video capacity and quality using rate adaptation, RAN caching and processing[J]. IEEE/ACM Transactions on Networking, 2016, 24(2): 996-1010. [24] TRAN T X, PANDEY P, HAJISAMI A, et al. Collaborative multi-bitrate video caching and processing in mobile-edge computing networks[C]//Proceedings of the 2017 13th Annual Conference on Wireless On-demand Network Systems and Services. Piscataway: IEEE, 2017: 165-172. [25] TRAN T X, LE D V, YUE G, et al. Cooperative hierarchical caching and request scheduling in a cloud radio access network[J]. IEEE Transactions on Mobile Computing, 2018, 17(12): 2729-2743. [26] LIANG C, HE Y, YU F R, et al. Enhancing video rate adaptation with mobile edge computing and caching in software-defined mobile networks[J]. IEEE Transactions on Wireless Communications, 2018, 17(10): 7013-7026. [27] LIANG C, HE Y, YU F R, et al. Video rate adaptation and traffic engineering in mobile edge computing and caching-enabled wireless networks[C]//Proceedings of the 2017 IEEE 86th Vehicular Technology Conference. Piscataway: IEEE, 2017: 1-5. [28] JIN Y, QIAN Z, SUN G. A real-time multimedia streaming transmission control mechanism based on edge cloud computing and opportunistic approximation optimization[J]. Multimedia Tools and Applications, 2019, 78(7): 8911-8926. [29] HOU T, FENG G, QIN S, et al. Proactive content caching by exploiting transfer learning for mobile edge computing[J]. International Journal of Communication Systems, 2018, 31(11): e3706. [30] LI F, XU L, DUAN S, et al. Improving hierarchical mobile video caching through distributed cross-layer coordination[J]. Multimedia Tools and Applications, 2019, 78(5): 6049-6071. [31] LI S, GUO Z, SHOU G, et al. QoE analysis of NFV-based mobile edge computing video application[C]//Proceedings of the 2016 IEEE International Conference on Network Infrastructure and Digital Content. Piscataway: IEEE, 2016: 411-415. [32] MA L V, NGUYEN V Q, PARK J, et al. NFV-based mobile edge computing for lowering latency of 4K video streaming[C]//Proceedings of the 2018 10th International Conference on Ubiquitous and Future Networks. Piscataway: IEEE, 2018: 670-673. [33] SALSANO S, CHIARAVIGLIO L, BLEFARI-MELAZZI N, et al. Toward superfluid deployment of virtual functions: exploiting mobile edge computing for video streaming[C]//Proceedings of the 2017 29th International Teletraffic Congress. Piscataway: IEEE, 2017: 48-53. [34] VILALTA R, POPESCU I, MAYORAL A, et al. End-to-end SDN/NFV orchestration of video analytics using edge and cloud computing over programmable optical networks[C]//Proceedings of the 2017 Optical Fiber Communications Conference and Exhibition. Piscataway: IEEE, 2017: 1-3. [35] MANARIYO S, KHAKIMOV A, PYATKINA D, et al. Optimization algorithm for IPTV video service delivery over SDN using MEC technology[C]//Proceedings of the 18th?International Conference on Internet of Things, Smart Spaces, and Next Generation Networks and Systems. Cham: Springer, 2018: 419-427. [36] LONG C, CAO Y, JIANG T, et al. Edge computing framework for cooperative video processing in multimedia IoT systems[J]. IEEE Transactions on Multimedia, 2018, 20(5): 1126-1139. [37] YI S, HAO Z, ZHANG Q, et al. LAVEA: latency-aware video analytics on edge computing platform[C]//Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems. Piscataway: IEEE, 2017: 2573-2574. [38] ANANTHANARAYANAN G, BAHL P, BODíK P, et al. Real-time video analytics: the killer App for edge computing[J]. Computer, 2017, 50(10): 58-67. [39] WANG J, FENG Z, CHEN Z, et al. Bandwidth-efficient live video analytics for drones via edge computing[C]//Proceedings of the 2018 IEEE/ACM Symposium on Edge Computing. Piscataway: IEEE, 2018: 159-173. [40] ALMAJALI S, EL DIEHN I ABOU-TAIR D, SALAMEH H B, et al. A distributed multi-layer MEC-cloud architecture for processing large scale IoT-based multimedia applications[J]. Multimedia Tools and Applications, 2019, 78(17): 24617-24638. [41] YANG S R, TSENG Y J, HUANG C C, et al. Multi-access edge computing enhanced video streaming: proof-of-concept implementation and prediction/QoE models[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1888-1902. [42] WANG C C, LIN Z N, YANG S R, et al. Mobile edge computing-enabled channel-aware video streaming for 4G LTE[C]//Proceedings of the 2017 13th International Wireless Communications and Mobile Computing Conference. Piscataway: IEEE, 2017: 564-569. [43] WANG J, HU Y, LI H, et al. A lightweight edge computing platform integration video services[C]//Proceedings of the 2018 International Conference on Network Infrastructure and Digital Content. Piscataway: IEEE, 2018: 183-187. [44] PALACIOS S, SANTOS V, BARSALLO E, et al. MioStream: a peer-to-peer distributed live media streaming on the edge[J]. Multimedia Tools and Applications, 2019, 78(17): 24657-24680. [45] GE C, WANG N. Real-time QoE estimation of DASH-based mobile video applications through edge computing[C]//Proceedings of the 2018 IEEE Conference on Computer Communications Workshops. Piscataway: IEEE, 2018: 766-771. [46] LI Y, FRANGOUDIS P A, HADJADJ-AOUL Y, et al. A mobile edge computing-based architecture for improved adaptive HTTP video delivery[C]//Proceedings of the 2016 IEEE Conference on Standards for Communications and Networking. Piscataway: IEEE, 2016: 1-6. [47] LI Y, FRANGOUDIS P A, HADJADJ-AOUL Y, et al. A mobile edge computing-assisted video delivery architecture for wireless heterogeneous networks[C]//Proceedings of the 2017 IEEE Symposium on Computers and Communications. Piscataway: IEEE, 2017: 534-539. [48] YE J, WANG Z, ZHU W. From global to local: a context-embedded LSTM recurrent network for local content popularity prediction[C]//Proceedings of the 7th International Conference on Artificial Intelligence and Mobile Services. Cham: Springer, 2018: 29-42. [49] WANG H, WANG Y, SUN R, et al. Joint user association and power allocation for minimizing multi-bitrate video transmission delay in mobile-edge computing networks[C]//Proceedings of the 12th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing. Cham: Springer, 2018: 467-478. [50] WANG S, ZHANG X, ZHANG Y, et al. A survey on mobile edge networks: convergence of computing, caching and communications[J]. IEEE Access, 2017, 5: 6757-6779. [51] XIA B, YANG C, CAO T. Modeling and analysis for cache-enabled networks with dynamic traffic[J]. IEEE Communications Letters, 2016, 20(12): 2506-2509. [52] SENGUPTA A, AMURU S, TANDON R, et al. Learning distributed caching strategies in small cell networks[C]//Proceedings of the 2014 11th International Symposium on Wireless Communications Systems. Piscataway: IEEE, 2014: 917-921. [53] GU J, WANG W, HUANG A, et al. Distributed cache replacement for caching-enable base stations in cellular networks[C]//Proceedings of the 2014 IEEE International Conference on Communications. Piscataway: IEEE, 2014: 2648-2653. [54] CHIEN W C, WENG H Y, LAI C F. Q-learning based collaborative cache allocation in mobile edge computing[J]. Future Generation Computer Systems, 2020, 102: 603-610. [55] LI W, WANG C, LI D, et al. Edge caching for D2D enabled hierarchical wireless networks with deep reinforcement learning[J]. Wireless Communications and Mobile Computing, 2019(1): 2561069. [56] SADEGHI A, SHEIKHOLESLAMI F, GIANNAKIS G B. Optimal and scalable caching for 5G using reinforcement learning of space-time popularities[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 180-190. [57] QIAO G, LENG S, MAHARJAN S, et al. Deep reinforcement learning for cooperative content caching in vehicular edge computing and networks[J]. IEEE Internet of Things Journal, 2020, 7(1): 247-257. [58] WANG F, ZHANG C, WANG F, et al. DeepCast: towards personalized QoE for edge-assisted crowdcast with deep reinforcement learning[J]. IEEE/ACM Transactions on Networking, 2020, 28(3): 1255-1268. [59] PANG Z, SUN L, HUANG T, et al. Towards QoS-aware cloud live transcoding: a deep reinforcement learning approach[C]//Proceedings of the 2019 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2019: 670-675. [60] WAN Z, LI Y. Deep reinforcement learning-based collaborative video caching and transcoding in clustered and intelligent edge B5G networks[J]. Wireless Communications and Mobile Computing, 2020(1): 6684293. [61] LI Y. Federated deep reinforcement learning-based caching and bitrate adaptation for VR panoramic video in clustered MEC networks[J]. Electronics, 2022, 11(23): 3968. [62] WANG S, YANG J, BI S. Adaptive video streaming in multi-tier computing networks: joint edge transcoding and client enhancement[J]. IEEE Transactions on Mobile Computing, 2024, 23(4): 2657-2670. [63] 李佳, 谢人超, 贾庆民, 等. 面向视频流的MEC缓存转码联合优化研究[J]. 电信科学, 2018, 34(8): 76-86. LI J, XIE R C, JIA Q M, et al. A survey on joint optimization of MEC caching and transcoding for video streaming[J]. Telecommunications Science, 2018, 34(8): 76-86. [64] ZHANG Z, ZHENG Y, LI C, et al. Cache-enabled adaptive bit rate streaming via deep self-transfer reinforcement learning[C]//Proceedings of the 2018 10th International Conference on Wireless Communications and Signal Processing. Piscataway: IEEE, 2018: 1-6. [65] LI Z, CHU T, KOLMANOVSKY I V, et al. Cloud resource allocation for cloud-based automotive applications[J]. Mechatronics, 2018, 50: 356-365. [66] ALQERM I, SHIHADA B. Energy-efficient power allocation in multitier 5G networks using enhanced online learning[J]. IEEE Transactions on Vehicular Technology, 2017, 66(12): 11086-11097. [67] HE X, WANG K, HUANG H, et al. Green resource allocation based on deep reinforcement learning in content-centric IoT[J]. IEEE Transactions on Emerging Topics in Computing, 2020, 8(3): 781-796. [68] NASIR Y S, GUO D. Multi-agent deep reinforcement learning for dynamic power allocation in wireless networks[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(10): 2239-2250. [69] LI J, GAO H, LV T, et al. Deep reinforcement learning based computation offloading and resource allocation for MEC[C]//Proceedings of the 2018 IEEE Wireless Communications and Networking Conference. Piscataway: IEEE, 2018: 1-6. [70] HUANG L, BI S, ZHANG Y A. Deep reinforcement learning for online computation offloading in wireless powered mobile-edge computing networks[J]. IEEE Transactions on Mobile Computing, 2020, 19(11): 2581-2593. [71] MIN M, XIAO L, CHEN Y, et al. Learning-based computation offloading for IoT devices with energy harvesting[J]. IEEE Transactions on Vehicular Technology, 2019, 68(2): 1930-1941. [72] CHEN X, ZHANG H, WU C, et al. Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning[J]. IEEE Internet of Things Journal, 2019, 6(3): 4005-4018. [73] CHEN Z, WANG X. Decentralized computation offloading for multi-user mobile edge computing: a deep reinforcement learning approach[J]. EURASIP Journal on Wireless Communications and Networking, 2020(1): 188. [74] PARK S, KIM J, KWON D, et al. Joint offloading and streaming in mobile edges: a deep reinforcement learning approach[C]//Proceedings of the 2019 IEEE VTS Asia Pacific Wireless Communications Symposium. Piscataway: IEEE, 2019: 1-4. [75] ZHANG H, WU W, WANG C, et al. Deep reinforcement learning-based offloading decision optimization in mobile edge computing[C]//Proceedings of the 2019 IEEE Wireless Communications and Networking Conference. Piscataway: IEEE, 2019: 1-7. [76] ZHANG C, ZHENG Z. Task migration for mobile edge computing using deep reinforcement learning[J]. Future Generation Computer Systems, 2019, 96: 111-118. [77] HE Y, ZHAO N, YIN H. Integrated networking, caching, and computing for connected vehicles: a deep reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2018, 67(1): 44-55. [78] PANG H, ZHANG C, WANG F, et al. Towards low latency multi-viewpoint 360° interactive video: a multimodal deep reinforcement learning approach[C]//Proceedings of the 2019 IEEE Conference on Computer Communications. Piscataway: IEEE, 2019: 991-999. [79] LI Y. A survey on edge intelligent video surveillance with deep reinforcement learning[J]. Journal of Network Intelligence, 2022, 7(1): 70-83. [80] GUO B, ZHANG X, WANG Y, et al. Deep-Q-network-based multimedia multi-service QoS optimization for mobile edge computing systems[J]. IEEE Access, 2019, 7: 160961-160972. [81] HUANG R, WONG V W S, SCHOBER R. Rate-splitting for intelligent reflecting surface-aided multiuser VR streaming[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(5): 1516-1535. [82] LIU M, TENG Y, YU F R, et al. A deep reinforcement learning-based transcoder selection framework for blockchain-enabled wireless D2D transcoding[J]. IEEE Transactions on Communications, 2020, 68(6): 3426-3439. [83] 张鹏程, 魏芯淼, 金惠颖. 移动边缘计算下基于联邦学习的动态QoS优化[J]. 计算机学报, 2021, 44(12): 2431-2446. ZHANG P C, WEI X M, JIN H Y. Dynamic QoS optimization method based on federal learning in mobile edge computing[J]. Chinese Journal of Computers, 2021, 44(12): 2431-2446. [84] ZHAO K, ZHOU Z, OUYANG T, et al. QoS-aware resource optimization for hierarchical cross-edge video analytics[C]//Proceedings of the 2023 20th Annual IEEE International Conference on Sensing, Communication, and Networking. Piscataway: IEEE, 2023: 519-527. [85] TANG Q, XIE R, FANG Z, et al. Joint service deployment and task scheduling for satellite edge computing: a two-timescale hierarchical approach[J]. IEEE Journal on Selected Areas in Communications, 2024, 42(5): 1063-1079. [86] GOUDARZI M, RODRIGUEZ M A, SARVI M, et al. μ-DDRL: a QoS-aware distributed deep reinforcement learning technique for service offloading in fog computing environments[J]. IEEE Transactions on Services Computing, 2024, 17(1): 47-59. [87] JIANG Q, LEUNG V C M, TANG H. Statistical QoS-guaranteed traffic rate adaptation for wireless scalable video streaming[J]. IEEE Systems Journal, 2022, 16(2): 3433-3436. [88] JIANG Q, LEUNG V C M, TANG H, et al. QoS-guaranteed adaptive bandwidth allocation for mobile multiuser scalable video streaming[J]. IEEE Wireless Communications Letters, 2019, 8(3): 721-724. [89] ZHANG H, DONG L, GAO G, et al. DeepQoE: a multimodal learning framework for video quality of experience (QoE) prediction[J]. IEEE Transactions on Multimedia, 2020, 22(12): 3210-3223. [90] ZHAO T, LIU Q, CHEN C W. QoE in video transmission: a user experience-driven strategy[J]. IEEE Communications Surveys & Tutorials, 2017, 19(1): 285-302. [91] JI A, LUAN Y, LIU X. QoE-driven optimization strategies for dynamic adaptive streaming media[C]//Proceedings of the 2023 IEEE International Conference on Smart Internet of Things. Piscataway: IEEE, 2023: 177-183. [92] KALAN R S. QoE-driven multimedia streaming leveraging distributed network function virtualization at edge[C]//Proceedings of the 2023 8th International Conference on Information and Network Technologies. Piscataway: IEEE, 2023: 27-32. [93] TAN X, XU L, ZHENG Q, et al. QoE-driven DASH multicast scheme for 5G mobile edge network[J]. Journal of Communications and Information Networks, 2021, 6(2): 153-165. [94] YU L, TILLO T, XIAO J. QoE-driven dynamic adaptive video streaming strategy with future information[J]. IEEE Transactions on Broadcasting, 2017, 63(3): 523-534. [95] MU P K, ZHENG J, LUAN T H, et al. AMIS-MU: edge computing based adaptive video streaming for multiple mobile users[J]. IEEE Transactions on Mobile Computing, 2024, 23(1): 117-134. [96] LIU X, CHUAI G, WANG X, et al. QoE-driven antenna tuning in cellular networks with cooperative multi-agent reinforcement learning[J]. IEEE Transactions on Mobile Computing, 2024, 23(2): 1186-1199. [97] MA X, LI Q, ZOU L, et al. QAVA: QoE-aware adaptive video bitrate aggregation for HTTP live streaming based on smart edge computing[J]. IEEE Transactions on Broadcasting, 2022, 68(3): 661-676. [98] LI Z, ZHONG P, HUANG J, et al. Achieving QoE fairness in bitrate allocation of 360° video streaming[J]. IEEE Transactions on Multimedia, 2023, 26: 1169-1178. [99] RUAN J, XIE D. A survey on QoE-oriented VR video streaming: some research issues and challenges[J]. Electronics, 2021, 10(17): 2155. [100] BARAKABITZE A A, BARMAN N, AHMAD A, et al. QoE management of multimedia streaming services in future networks: a tutorial and survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(1): 526-565. [101] SAOVAPAKHIRAN B, NARUEPHIPHAT W, CHARNSRIPINYO C, et al. QoE-driven IoT architecture: a comprehensive review on system and resource management[J]. IEEE Access, 2022, 10: 84579-84621. [102] LIU L, HU H, LUO Y, et al. When wireless video streaming meets AI: a deep learning approach[J]. IEEE Wireless Communications, 2020, 27(2): 127-133. |
[1] | 刘延飞, 李超, 王忠, 王杰铃. 多智能体深度强化学习及可扩展性研究进展[J]. 计算机工程与应用, 2025, 61(4): 1-24. |
[2] | 顾金浩, 况立群, 韩慧妍, 曹亚明, 焦世超. 动态环境下共融机器人深度强化学习导航算法[J]. 计算机工程与应用, 2025, 61(4): 90-98. |
[3] | 赵婵婵, 吕飞, 石宝, 尉晓敏, 杨星辰, 岳效灿. 面向边缘智能的协同推理方法研究综述[J]. 计算机工程与应用, 2025, 61(3): 1-20. |
[4] | 和涛, 栗娟. 改进DDPG的端边DNN协同推理策略[J]. 计算机工程与应用, 2025, 61(2): 304-315. |
[5] | 张泽崴, 张建勋, 邹航, 李林, 南海. 多智能体深度强化学习的图像特征分类方法[J]. 计算机工程与应用, 2024, 60(7): 222-228. |
[6] | 朵春红, 匡竹, 齐国梁, 梅华威, 李保罡, 李永倩. 配电网中任务卸载决策与边缘资源分配优化方法[J]. 计算机工程与应用, 2024, 60(5): 281-290. |
[7] | 曹慧娟, 余庚花, 陈志刚. 协作处理任务的多无人机辅助移动边缘计算[J]. 计算机工程与应用, 2024, 60(4): 298-305. |
[8] | 李鑫, 沈捷, 曹恺, 李涛. 深度强化学习的机械臂密集场景多物体抓取方法[J]. 计算机工程与应用, 2024, 60(23): 325-332. |
[9] | 黄泽丰, 李涛. RISE-D3QN驱动的多无人机数据采集路径规划[J]. 计算机工程与应用, 2024, 60(20): 328-338. |
[10] | 王凤英, 陈莹, 袁帅, 杜利明. 自注意力机制结合DDPG的机器人路径规划研究[J]. 计算机工程与应用, 2024, 60(19): 158-166. |
[11] | 李兴洲, 李艳武, 谢辉. 基于CNN的深度强化学习算法求解柔性作业车间调度问题[J]. 计算机工程与应用, 2024, 60(17): 312-320. |
[12] | 何丽, 姚佳程, 廖雨鑫, 张文智, 卢赵清, 袁亮, 肖文东. 深度强化学习求解移动机器人端到端导航问题的研究综述[J]. 计算机工程与应用, 2024, 60(14): 1-13. |
[13] | 司明, 邬伯藩, 胡灿, 邢伟强. 智能仓储交通信号与多AGV路径规划协同控制方法[J]. 计算机工程与应用, 2024, 60(11): 290-297. |
[14] | 宁强, 刘元盛, 谢龙洋. 基于SAC的自动驾驶车辆控制方法应用[J]. 计算机工程与应用, 2023, 59(8): 306-314. |
[15] | 韩润海, 陈浩, 刘权, 黄健. 基于对手动作预测的智能博弈对抗算法[J]. 计算机工程与应用, 2023, 59(7): 190-197. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||