[1] 王旭阳, 庞文倩, 赵丽婕. 多模态方面级情感分析的多视图交互学习网络[J]. 计算机工程与应用, 2024, 60(7): 92-100.
WANG X Y, PANG W Q, ZHAO L J. Multiview interaction learning network for multimodal aspect-level sentiment analysis[J]. Computer Engineering and Applications, 2024, 60(7): 92-100.
[2] 王亮, 王屹, 王军. 情感分析的跨模态Transformer组合模型[J]. 计算机工程与应用, 2024, 60(13): 124-135.
WANG L, WANG Y, WANG J. Cross-modal transformer combination model for sentiment analysis[J]. Computer Engineering and Applications, 2024, 60(13): 124-135.
[3] YANG X C, FENG S, ZHANG Y F, et al. Multimodal sentiment detection based on multi-channel graph neural networks[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2021: 328-339.
[4] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016.
[5] BASTINGS J, TITOV I, AZIZ W, et al. Graph convolutional encoders for syntax-aware neural machine translation[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 1957-1967.
[6] YAO L, MAO C S, LUO Y. Graph convolutional networks for text classification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 7370-7377.
[7] WU J F, MAI S J, HU H F. Graph capsule aggregation for unaligned multimodal sequences[C]//Proceedings of the 2021 International Conference on Multimodal Interaction. New York: ACM, 2021: 521-529.
[8] LIAO W X, ZENG B, LIU J Q, et al. Image-text interaction graph neural network for image-text sentiment analysis[J]. Applied Intelligence, 2022, 52(10): 11184-11198.
[9] ZHAO T, PENG J J, HUANG Y S, et al. A graph convolution-based heterogeneous fusion network for multimodal sentiment analysis[J]. Applied Intelligence, 2023, 53(24): 30455-30468.
[10] WANG H B, REN C, YU Z T. Multimodal sentiment analysis based on cross-instance graph neural networks[J]. Applied Intelligence, 2024, 54(4): 3403-3416.
[11] MAI S J, XING S L, HE J X, et al. Multimodal graph for unaligned multimodal sequence analysis via graph convolution and graph pooling[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2023, 19(2): 1-24.
[12] HUANG F R, WEI K M, WENG J, et al. Attention-based modality-gated networks for image-text sentiment analysis[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2020, 16(3): 1-19.
[13] AN J Y, ZAINON W M N W. Integrating color cues to improve multimodal sentiment analysis in social media[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 106874.
[14] LIU H, LI K, FAN J P, et al. Social image-text sentiment classification with cross-modal consistency and knowledge distillation[J]. IEEE Transactions on Affective Computing, 2023, 14(4): 3332-3344.
[15] WANG H R, LI X H, REN Z Y, et al. Multimodal sentiment analysis representations learning via contrastive learning with condense attention fusion[J]. Sensors, 2023, 23(5): 2679.
[16] WANG D, TIAN C N, LIANG X, et al. Dual-perspective fusion network for aspect-based multimodal sentiment analysis[J]. IEEE Transactions on Multimedia, 2023, 26: 4028-4038.
[17] YU J F, CHEN K, XIA R. Hierarchical interactive multimodal transformer for aspect-based multimodal sentiment analysis[J]. IEEE Transactions on Affective Computing, 2023, 14(3): 1966-1978.
[18] YANG J, XU M Y, XIAO Y L, et al. AMIFN: aspect-guided multi-view interactions and fusion network for multimodal aspect-based sentiment analysis[J]. Neurocomputing, 2024, 573: 127222.
[19] WANG L, PENG J J, ZHENG C Z, et al. A cross modal hierarchical fusion multimodal sentiment analysis method based on multi-task learning[J]. Information Processing & Management, 2024, 61(3): 103675.
[20] PENNINGTON J, SOCHER R, MANNING C. Glove: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1532-1543.
[21] ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2016: 207-212.
[22] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556, 2014.
[23] ZHOU B L, LAPEDRIZA A, KHOSLA A, et al. Places: a 10 million image database for scene recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(6): 1452-1464.
[24] WU Q, SHEN C H, LIU L Q, et al. What value do explicit high level concepts have in vision to language problems?[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 203-212.
[25] CAI Y T, CAI H Y, WAN X J. Multi-modal sarcasm detection in twitter with hierarchical fusion model[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 2506-2515.
[26] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
[27] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision. Cham: Springer, 2014: 740-755.
[28] ZHAN F N, YU Y C, WU R L, et al. Multimodal image synthesis and editing: a survey and taxonomy[J]. arXiv:2112.
13592, 2021.
[29] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017.
[30] HUANG L, MA D, LI S, et al. Text level graph neural network for text classification[J]. arXiv:1910.02356, 2019.
[31] WANG Y Z, QIAN S S, HU J, et al. Fake news detection via knowledge-driven multimodal graph convolutional networks[C]//Proceedings of the 2020 International Conference on Multimedia Retrieval. New York: ACM, 2020: 540-547.
[32] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv:1710.10903, 2017.
[33] ZHU T, LI L D, YANG J F, et al. Multimodal emotion classification with multi-level semantic reasoning network[J]. IEEE Transactions on Multimedia, 2022, 25: 6868-6880.
[34] NIU T, ZHU S A, PANG L, et al. Sentiment analysis on multi-view social data[C]//Proceedings of the 22nd International Conference on MultiMedia Modeling. Cham: Springer, 2016: 15-27.
[35] YANG X C, FENG S, WANG D L, et al. Image-text multimodal emotion classification via multi-view attentional network[J]. IEEE Transactions on Multimedia, 2020, 23: 4014-4026.
[36] XU N, MAO W. MultiSentiNet: a deep semantic network for multimodal sentiment analysis[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, 2017.
[37] KIM Y. Convolutional neural networks for sentence classification[J]. arXiv:1408.5882, 2014.
[38] XU N. Analyzing multimodal public sentiment based on hierarchical semantic attentional network[C]//Proceedings of the 2017 IEEE International Conference on Intelligence and Security Informatics. Piscataway: IEEE, 2017: 152-154.
[39] XU N, MAO W J, CHEN G D. A co-memory network for multimodal sentiment analysis[C]//Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. New York: ACM, 2018: 929-932.
[40] LI Z, XU B, ZHU C H, et al. CLMLF: a contrastive learning and multi-layer fusion method for multimodal sentiment detection[J]. arXiv:2204.05515, 2022.
[41] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605. |