[1] CHAKRABORTY D, RUDRAPAL D, BHATTACHARYA B. A multimodal sentiment analysis approach for tweets by comprehending co-relations between information modalities[J]. Multimedia Tools and Applications, 2024, 83(17): 50061-50085.
[2] WANG Z H, HE S M, XU G, et al. Will sentiment analysis need subculture? A new data augmentation approach[J]. Journal of the Association for Information Science and Technology, 2024, 75(6): 655-670.
[3] CALISKAN A, BRYSON J J, NARAYANAN A. Semantics derived automatically from language corpora contain human-like biases[J]. Science, 2017, 356(6334): 183-186.
[4] RUDINGER R, MAY C, VAN DURME B. Social bias in elicited natural language inferences[C]//Proceedings of the First ACL Workshop on Ethics in Natural Language Processing. Stroudsburg: ACL, 2017: 74-79.
[5] LIANG P, WU C, MOTENCY L. Towards understanding and mitigating social biases in language models[C]//Proceedings of the International Conference on Machine Learning, 2021: 6565-6576.
[6] ZADEH A, CHEN M H, PORIA S, et al. Tensor fusion network for multimodal sentiment analysis[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 1103-1114.
[7] HE X T, PENG Y X. Fine-grained image classification via combining vision and language[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 7332-7340.
[8] WU Y Q, KUANG K, ZHANG Y T, et al. De-biased court’s view generation with causality[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 763-780.
[9] ZENG X J, LI Y L, ZHAI Y C, et al. Counterfactual generator: a weakly-supervised method for named entity recognition[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 7270-7280.
[10] YU J F, JIANG J, XIA R. Entity-sensitive attention and fusion network for entity-level multimodal sentiment classification[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019, 28: 429-439.
[11] PéREZ-ROSAS V, MIHALCEA R, MORENCY L P. Utterance-level muItimodal sentiment analysis[C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics(Volume 1: Long Papers), 2013: 973-982.
[12] PORIA S, CAMBRIA E, GELBUKH A. Deep convolutional neural network textual features and multiple kernel learning for utterance-level multimodal sentiment analysis[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 2539-2544.
[13] MAO Y Y, LIU Q, ZHANG Y. Sentiment analysis methods, applications, and challenges: a systematic literature review[J]. Journal of King Saud University - Computer and Information Sciences, 2024, 36(4): 102048.
[14] NOJAVANASGHARI B, GOPINATH D, KOUSHIK J, et al. Deep multimodal fusion for persuasiveness prediction[C]//Proceedings of the 18th ACM International Conference on Multimodal Interaction. New York: ACM, 2016: 284-288.
[15] YU Y H, LIN H F, MENG J N, et al. Visual and textual sentiment analysis of a microblog using deep convolutional neural networks[J]. Algorithms, 2016, 9(2): 41.
[16] HUSSAIN M S, CALVO R A, AGHAEI POUR P. Hybrid fusion approach for detecting affects from multichannel physiology[C]//Proceedings of the 4th International Conference on Affective Computing and Intelligent Interaction. Berlin: Springer, 2011: 568-577.
[17] CHEN M H, WANG S, LIANG P P, et al. Multimodal sentiment analysis with word-level fusion and reinforcement learning[C]//Proceedings of the 19th ACM International Conference on Multimodal Interaction. New York: ACM, 2017: 163-171.
[18] GUNES H, PICCARDI M. Bi-modal emotion recognition from expressive face and body gestures[J]. Journal of Network and Computer Applications, 2007, 30(4): 1334-1345.
[19] FENG F L, ZHANG J Z, HE X N, et al. Empowering language understanding with counterfactual reasoning[C]//Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: ACL, 2021: 2226-2236.
[20] LIU X, YIN D, FENG Y S, et al. Everything has a cause: leveraging causal inference in legal text analysis[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2021: 1928-1941.
[21] WEI J, ZOU K. Easy data augmentation techniques for boosting performance on text classification tasks[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019: 6382-6388.
[22] QIU R H, WANG S, CHEN Z, et al. CausalRec: causal inference for visual debiasing in visually-aware recommendation[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 3844-3852.
[23] NIU Y L, TANG K H, ZHANG H W, et al. Counterfactual VQA: a cause-effect look at language bias[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 12695-12705.
[24] 扆雅欣, 孙欣伊, 谭红叶. 基于反事实推理的阅读理解去偏方法[J]. 软件导刊, 2023, 22(1): 152-157.
YI Y X, SUN X Y, TAN H Y. Counterfactual inference for reading comprehension debiasing[J]. Software Guide, 2023, 22(1): 152-157.
[25] 肖之仪. 融合因果推理的细粒度情感分析算法的设计与实现[D]. 北京: 北京邮电大学, 2023.
XIAO Z Y. Design and implementation of fine-grained sentiment analysis algorithm based on causal reasoning[D]. Beijing: Beijing University of Posts and Telecommunications, 2023.
[26] RAHMAN W, HASAN M K, LEE S W, et al. Integrating multimodal information in large pretrained transformers[C]//Proceedings of the Conference Association for Computational Linguistics Meeting, 2020: 2359-2369.
[27] DEVLIN J, CHANG M, LEE M. BERT: Pre-training of deep bidirectional transformers for language understanding [C]//Proceedings of the Annual Meeting of the Association for Computational Linguistics, 2019: 4171-4186.
[28] SUN T, WANG W J, JING L, et al. Counterfactual reasoning for out-of-distribution multimodal sentiment analysis[C]//Proceedings of the 30th ACM International Conference on Multimedia. New York: ACM, 2022: 15-23.
[29] ZUHEROS C, MARTíNEZ-CáMARA E, HERRERA-VIEDMA E, et al. Sentiment analysis based multi-person multi-criteria decision making methodology using natural language proce-ssing and deep learning for smarter decision aid. Case study of restaurant choice using TripAdvisor reviews[J]. Information Fusion, 2021, 68: 22-36.
[30] GAO K, ANANDHAN P, KUMAR R. Analysis and evaluation of the regional air quality index forecasting based on web-text sentiment analysis method[J]. Environmental Impact Assessment Review, 2021, 87: 106514.
[31] CADENE R, BEN-YOUNES H, CORD M, et al. MUREL: multimodal relational reasoning for visual question answering[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1989-1998.
[32] CHHAJRO M A, LUHANA K K, ALI WAGAN A, et al. Text sentiment analysis from students’ comments using various machine learning and deep learning techniques: a comparative analysis[J]. International Journal of Data Analysis Techniques and Strategies, 2023, 15(4): 323-338.
[33] LE X Q, CHU J D, DENG S Y, et al. CiteOpinion: evidence-based evaluation tool for academic contributions of research papers based on citing sentences[J]. Journal of Data and Information Science, 2019, 4(4): 26-41. |