[1] HE K, SUN J, TANG X. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(12): 2341-2353.
[2] ZHU Q, MAI J, SHAO L. A fast single image haze removal algorithm using color attenuation prior[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3522-3533.
[3] FATTAL R. Dehazing using color-lines[J]. ACM Transactions on Graphics (TOG), 2014, 34(1): 1-14.
[4] NAYAR S K, NARASIMHAN S G. Vision in bad weather[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999: 820-827.
[5] REN W, PAN J, ZHANG H, et al. Single image dehazing via multi-scale convolutional neural networks with holistic edges[J]. International Journal of Computer Vision, 2020, 128: 240-259.
[6] CAI B, XU X, JIA K, et al. DehazeNet: an end-to-end system for single image haze removal[J]. IEEE Transactions on Image Processing, 2016, 25(11): 5187-5198.
[7] LI B, PENG X, WANG Z, et al. AOD-Net: all-in-one dehazing network[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 4770-4778.
[8] DONG H, PAN J, XIANG L, et al. Multi-scale boosted dehazing network with dense feature fusion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 2157-2167.
[9] QIN X, WANG Z, BAI Y, et al. FFA-Net: feature fusion attention network for single image dehazing[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 11908-11915.
[10] FAN G, GAN M, FAN B, et al. Multiscale cross-connected dehazing network with scene depth fusion[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(2): 1598-1612.
[11] SHEN H, ZHAO Z Q, ZHANG Y, et al. Mutual information-driven triple interaction network for efficient image dehazing[C]//Proceedings of the 31st ACM International Conference on Multimedia, 2023: 7-16.
[12] 吴峻江, 储珺, 卢昂, 等. 基于感知监督和多层次特征融合的去雾算法[J]. 计算机工程与应用, 2023, 59(21):201-213.
WU J J,CHU J,LU A,et al Perceptual supervision-guided and multi-hierarchical feature fusion for lmage dehazing[J]. Computer Engineering and Applications, 2023, 59(21): 204-213.
[13] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[14] LIU Z, LIN Y, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[15] SONG Y, HE Z, QIAN H, et al. Vision transformers for single image dehazing[J]. IEEE Transactions on Image Processing, 2023, 32: 1927-1941.
[16] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention(MICCAI 2015), Munich, Germany, October 5-9, 2015: 234-241.
[17] LI X, WANG W, HU X, et al. Selective kernel networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 510-519.
[18] HENDRYCKS D, GIMPEL K. Gaussian error linear units (GELUs)[J]. arXiv:1606. 08415, 2016.
[19] NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines[C]//Proceedings of the 27th International Conference on Machine Learning (ICML-10), 2010: 807-814.
[20] MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models[C]//Proceedings of the International Conference on Machine Learning (ICML) ,2013.
[21] LIANG J, CAO J, SUN G, et al. SwinIR: image restoration using swin transformer[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 1833-1844.
[22] WANG Z, CUN X, BAO J, et al. Uformer: a general u-shaped transformer for image restoration[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 17683-17693.
[23] PARK N, KIM S. How do vision transformers work?[J]. arXiv:2202.06709, 2022.
[24] DAI J, QI H, XIONG Y, et al. Deformable convolutional networks[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 764-773.
[25] LIU J J, HOU Q, CHENG M M, et al. Improving convolutional networks with self-calibrated convolutions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10096-10105.
[26] LIN M, CHEN Q, YAN S. Network in network[J]. arXiv:1312.4400, 2013.
[27] WANG Z, JI S. Smoothed dilated convolutions for improved dense prediction[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018: 2486-2495. |