[1] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2015: 3431-3440.
[2] KARKANIS S A, IAKOVIDIS D K, MAROULIS D E, et al. Computer-aided tumor detection in endoscopic video using color wavelet features[J]. IEEE Transactions on Information Technology in Biomedicine, 2003, 7(3): 141-152.
[3] HWANG S, OH J H, TAVANAPONG W, et al. Polyp detection in colonoscopy video using elliptical shape feature[C]//Proceedings of the 2007 IEEE International Conference on Image Processing, 2007: 465-468.
[4] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C] //Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention. Heidelberg: Springer, 2015: 234-241.
[5] ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]//Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Heidelberg: Springer, 2018: 3-11.
[6] JHA D, SMEDSRUD P H, RIEGLER M A, et al. ResUNet++: an advanced architecture for medical image segmentation[C]//Proceedings of the IEEE International Symposium on Multimedia. Los Alamitos: IEEE Computer Society Press, 2019.
[7] FAN D P, JI G P, ZHOU T, et al. PraNet: parallel reverse attention network for polyp segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer- Assisted Intervention. Heidelberg: Springer, 2020: 263-273.
[8] 时永刚, 李祎, 周治国, 等. 基于阶梯结构的 U-Net 结肠息肉分割算法[J]. 电子与信息学报, 2022, 44(1): 39-47.
SHI Y G, LI Y, ZHOU Z G, et al. Polyp segmentation using stair-structured U-Net[J]. Journal of Electronics & Information Technology, 2022, 44(1): 39-47.
[9] ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2881-2890.
[10] YIN Z, LIANG K, MA Z, et al. Duplex contextual relation network for polyp segmentation[C]//Proceedings of the 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 2022: 1-5.
[11] SRIVASTAVA A, JHA D, CHANDA S, et al. MSRF-Net: a multi-scale residual fusion network for biomedical image segmentation[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 26(5): 2252-2263.
[12] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017.
[13] ZHANG Y, ZHU H, CHENG J, et al. Improving the quality of fetal heart ultrasound imaging with multihead enhanced self-attention and contrastive learning[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(11): 5518-5529.
[14] LI Y, WANG J, CHEN S, et al. Enhanced multihead self-attention block network for remote sensing image scene classification[J]. Journal of Applied Remote Sensing, 2023, 17(1): 016517.
[15] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[16] 崔珂, 田启川, 廉露. 基于U-Net变体的医学图像分割算法综述[J]. 计算机工程与应用, 2024, 60(11): 32-49.
CUI K, TIAN Q C, LIAN L. Review of medical image segmentation algorithms based on U-Net variants[J]. Computer Engineering and Applications, 2024, 60(11): 32-49.
[17] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[18] 郭祥振, 李思潼, 卢锐, 等. 基于多任务联合注意力的结肠息肉分割网络[J]. 计算机工程, 2024, 50(2): 327-336.
GUO X Z, LI S T, LU R, et al. Colon polyp segmentation network based on multi-task joint attention[J]. Computer Engineering, 2024, 50(2): 327-336.
[19] BUI N T, HOANG D H, NGUYEN Q T, et al. MEGANet: multi-scale edge-guided attention network for weak boundary polyp segmentation[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2024: 7985-7994.
[20] JHA D, SMEDSRUD P H, RIEGLER M A, et al. Kvasir-SEG: a segmented polyp dataset[C]//Proceedings of the 26th International Conference on MultiMedia Modeling, Daejeon, South Korea, Jan 5-8, 2020. Cham: Springer International Publishing, 2020: 451-462.
[21] BERNAL J, SáNCHEZ F J, FERNáNDEZ-ESPARRACH G, et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians[J]. Computerized Medical Imaging and Graphics, 2015, 43: 99-111.
[22] TAJBAKHSH N, GURUDU S R, LIANG J. Automated polyp detection in colonoscopy videos using shape and context information[J]. IEEE Transactions on Medical Imaging, 2015, 35(2): 630-644.
[23] VáZQUEZ D, BERNAL J, SáNCHEZ F J, et al. A benchmark for endoluminal scene segmentation of colonoscopy images[J]. Journal of Healthcare Engineering, 2017, 2017(1): 4037190.
[24] SILVA J, HISTACE A, ROMAIN O, et al. Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer[J]. International Journal of Computer Assisted Radiology and Surgery, 2014, 9: 283-293.
[25] ZHOU L. Spatially exclusive pasting: a general data augmentation for the polyp segmentation[C]//Proceedings of the 2023 International Joint Conference on Neural Networks (IJCNN), 2023: 1-7.
[26] KIM T, LEE H, KIM D. UACANet: uncertainty augmented context attention for polyp segmentation[C]//Proceedings of the 29th ACM International Conference on Multimedia, 2021: 2167-2175.
[27] NARAYAN V, MALL P K, AWASTHI S, et al. FuzzyNet: medical image classification based on GLCM texture feature[C]//Proceedings of the 2023 International Conference on Artificial Intelligence and Smart Communication (AISC), 2023: 769-773.
[28] WANG D, XU C, AN Z, et al. JudgeNet: inverse attention and multiscale fusion networks with boundary determination in polyp segmentation[J]. IEEE Access, 2023, 11: 58279-58293. |