[1] HAYDARI A, YILMAZ Y. Deep reinforcement learning for intelligent transportation systems: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(1): 11-32.
[2] PELLETIER M G, WANJURA J D, WSKEFIELD J R, et al. Cotton gin stand machine-vision inspection and removal system for plastic contamination: hand intrusion sensor design[J]. AgriEngineering, 2023, 6(1): 1-19.
[3] 彭大鑫, 甄彤, 李智慧. 低光照图像增强研究方法综述[J]. 计算机工程与应用, 2023, 59(18): 14-27.
PENG D X, ZHEN T, LI Z H. Survey of research methods for low light image enhancement[J]. Computer Engineering and Applications, 2023, 59(18): 14-27.
[4] 谭豪, 张惊雷, 贾鑫. 基于多级特征提取的低光照目标检测算法[J/OL]. 计算机工程与应用: 1-10[2024-06-03]. http://kns.cnki.net/kcms/detail/11.2127.TP.20240102.1444.004.html.
TAN H, ZHANG J L, JIA X. Low-light target detection algorithm based on bulti-level feature extraction[J/OL]. Computer Engineering and Applications: 1-10[2024-06-03]. http://kns.cnki.net/kcms/detail/11.2127.TP.20240102.1444.004.html.
[5] 李明悦, 晏涛, 井花花, 等. 多尺度特征融合的低照度光场图像增强算法[J]. 计算机科学与探索, 2023, 17(8): 1904-1916.
LI M Y, YAN T, JING H H, et al. Low-light enhancement method for light field images by fusing multi-scale features[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1904-1916.
[6] 韩晓微, 张云泽, 谢英红, 等. 动态异构特征融合的水下图像增强算法[J]. 控制与决策, 2023, 38(6): 1560-1568.
HAN X W, ZHANG Y Z, XIE Y H, et al. Underwater image enhancement algorithm based on dynamic heterogeneous feature fusion[J]. Control and Decision, 2023, 38(6): 1560-1568.
[7] MANJUNATH B S, MA W Y. Texture features for browsing and retrieval of image data[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(8): 837-842.
[8] FU X, CAO X. Underwater image enhancement with global-local networks and compressed-histogram equalization[J]. Signal Processing: Image Communication, 2020, 86: 115892.
[9] AGRAWAL S, PANDA R, MISHRO P K, et al. A novel joint histogram equalization based image contrast enhancement[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(4): 1172-1182.
[10] LAND E H, MCCANN J J. Lightness and retinex theory[J]. Josa, 1971, 61(1): 1-11.
[11] YANG W, WANG W, HUANG H, et al. Sparse gradient regularized deep retinex network for robust low-light image enhancement[J]. IEEE Transactions on Image Processing, 2021, 30: 2072-2086.
[12] AN Z, XU C, QIAN K, et al. EIEN: endoscopic image enhancement network based on retinex theory[J]. Sensors, 2022, 22(14): 5464.
[13] ZHANG Y, GUO X, MA J, et al. Beyond brightening low-light images[J]. International Journal of Computer Vision, 2021, 129: 1013-1037.
[14] LU Y, GUO Y, LIU R W, et al. MTRBNet: multi-branch topology residual block-based network for low-light enhancement[J]. IEEE Signal Processing Letters, 2022, 29: 1127-1131.
[15] FAN G D, FAN B, GAN M, et al. Multiscale low-light image enhancement network with illumination constraint[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(11): 7403-7417.
[16] LV F, LU F, WU J, et al. MBLLEN: low-light image/video enhancement using CNNs[C]//Proceedings of the British Machine Vision Conference (BMVC), Newcastle, UK, Sep 3-6, 2018. Durham, UK: BMVA Press, 2018.
[17] XU K, CHEN H, XU C, et al. Structure-texture aware network for low-light image enhancement[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(8): 4983-4996.
[18] GUO C, LI C, GUO J, et al. Zero-reference deep curve estimation for low-light image enhancement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, Jun 14-19, 2020. New York: IEEE, 2020: 1780-1789.
[19] FU Y, HONG Y, CHEN L, et al. LE-GAN: unsupervised low-light image enhancement network using attention module and identity invariant loss[J]. Knowledge-Based Systems, 2022, 240: 108010.
[20] BHATTACHARYA J, MODI S, GREGORAT L, et al. D2BGAN: a dark to bright image conversion model for quality enhancement and analysis tasks without paired supervision[J]. IEEE Access, 2022, 10: 57942-57961.
[21] JIANG Y, GONG X, LIU D, et al. EnlightenGAN: deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing, 2021, 30: 2340-2349.
[22] ZHOU Z R, ZHENG H S, WEN Q R. Linear contrast enhancement network for low-illumination image enhancement[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-16.
[23] ZOU W, GAO H, YE T, et al. VQCNIR: clearer night image restoration with vector-quantized codebook[C]//Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, Feb 12-17, 2024. New York: AAAI, 2024: 7873-7881.
[24] GUO X, LI Y, LING H. LIME: low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2016, 26(2): 982-993.
[25] MA K, ZENG K, WANG Z. Perceptual quality assessment for multi-exposure image fusion[J]. IEEE Transactions on Image Processing, 2015, 24(11): 3345-3356.
[26] LEE C W, LEE C, KIM C S. Contrast enhancement based on layered difference representation[C]//Proceedings of the 2012 19th IEEE International Conference on Image Processing, Lake Buena Vista, Orlando, FL, USA, Sep 30-Oct 3, 2012. New York: IEEE, 2012: 965-968.
[27] ZHENG Y P, ZHONG C L, LI P F, et al. Steps: joint self-supervised nighttime image enhancement and depth estimation[C]//Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, May 29-June 2, 2023. New York: IEEE, 2023: 4916-4923.
[28] MA L, MA T, LIU R, et al. Toward fast, flexible, and robust low-light image enhancement[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, Jun 19-24 2022. New York: IEEE, 2022: 5637-5646. |