[1] 刘艺, 李蒙蒙, 郑奇斌, 等. 视频目标跟踪算法综述[J]. 计算机科学与探索, 2022, 16(7): 1504-1515.
LIU Y, LI M M, ZHENG Q B, et al. Survey on video object tracking algorithms[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1504-1515.
[2] LI X, ZHA Y F, ZHANG T Z, et al. Survey of visual object tracking algorithms based on deep learning[J].Journal of Image and Graphics, 2019, 24(12): 2057-2080.
[3] QIU S M, GU Y Z, CHEN M H, et al. A dynamic adjust-head siamese network for object tracking[J]. IET Computer Vision, 2023, 17(2): 203-210.
[4] BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2010: 2544-2550.
[5] 陈云芳, 吴懿, 张伟. 基于孪生网络结构的目标跟踪算法综述[J]. 计算机工程与应用, 2020, 56(6): 10-18.
CHEN Y F, WU Y, ZHANG W. Survey of target tracking algorithm based on Siamese network structure[J]. Computer Engineering and Applications, 2020, 56(6): 10-18.
[6] ZHANG L, VARADARAJAN J, SUGANTHAN P N, et al. Robust visual tracking using oblique random forests[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5825-5834.
[7] BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2016: 850-865.
[8] LI Y J, CAI J T, ZHOU Q, et al. Joint semantic-instance segmentation method for intelligent transportation system[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(12): 15540-15547.
[9] LI B, WU W, WANG Q, et al. SiamRPN++: evolution of Siamese visual tracking with very deep networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 4277-4286.
[10] YAN B, ZHANG X Y, WANG D, et al. Alpha-refine: boosting tracking performance by precise bounding box estimation[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 5285-5294.
[11] CHEN Z D, ZHONG B N, LI G R, et al. Siamese box adaptive network for visual tracking[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 6667-6676.
[12] XU Y D, WANG Z Y, LI Z X, et al. SiamFC++: towards robust and accurate visual tracking with target estimation guidelines[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12549-12556.
[13] LI B, YAN J J, WU W, et al. High performance visual tracking with Siamese Region proposal network[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8971-8980.
[14] GUO D Y, SHAO Y Y, CUI Y, et al. Graph attention tracking[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 9538-9547.
[15] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
[16] GUO D Y, WANG J, CUI Y, et al. SiamCAR: Siamese fully convolutional classification and regression for visual tracking[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 6268-6276.
[17] WANG N, ZHOU W G, WANG J, et al. Transformer meets tracker: exploiting temporal context for robust visual tracking[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 1571-1580.
[18] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 213-229.
[19] CHEN X, YAN B, ZHU J, et al. Transformer tracking[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 8126-8135.
[20] YAN B, PENG H W, FU J L, et al. Learning spatio-temporal transformer for visual tracking[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 10428-10437.
[21] GUO J Y, HAN K, WU H, et al. CMT: convolutional neural networks meet vision transformers[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 12165-12175.
[22] PENG Z L, HUANG W, GU S Z, et al. Conformer: local features coupling global representations for visual recognition[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 357-366.
[23] ZHANG J M, SUN J, WANG J, et al. An object tracking framework with recapture based on correlation filters and Siamese networks[J]. Computers & Electrical Engineering, 2022, 98: 107730.
[24] ZHANG Z P, PENG H W, FU J L, et al. Ocean: object-aware anchor-free tracking[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 771-787.
[25] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017.
[26] YANG S L, ZHOU D M, CAO J D, et al. LightingNet: an integrated learning method for low-light image enhancement[J]. IEEE Transactions on Computational Imaging, 2023, 9: 29-42.
[27] SONG Z K, YU J Q, CHEN Y P, et al. Transformer tracking with cyclic shifting window attention[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 8781-8790.
[28] FU Zhihong, FU Zehua, LIU Q J, et al. SparseTT: visual tracking with sparse transformers[J]. arXiv:2205.03776, 2022.
[29] CUI Y T, JIANG C, WANG L M, et al. MixFormer: end-to-end tracking with iterative mixed attention[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 13598-13608.
[30] WU Y, CHEN Y P, YUAN L, et al. Rethinking classification and localization for object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10183-10192.
[31] HUANG L H, ZHAO X, HUANG K Q. GOT-10k: a large high-diversity benchmark for generic object tracking in the wild[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1562-1577.
[32] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2014: 740-755.
[33] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252.
[34] GLOROTl X, BENGIO Y.Understanding the difficulty of training deep feedforward neural networks[C]//Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 2010: 249-256.
[35] LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[J]. arXiv:1711.05101, 2017. |