[1] LIU Z P. Numerical flow visualization: vista and expedition[J]. Journal of Flow Visualization and Image Processing, 2022, 29(3): 1-27.
[2] SANE S, BUJACK R, GARTH C, et al. A survey of seed placement and streamline selection techniques[J]. Computer Graphics Forum, 2020, 39(3): 785-809.
[3] SHI Q T, AI B, WEN Y B, et al. Particle system-based multi-hierarchy dynamic visualization of ocean current data[J]. ISPRS International Journal of Geo-Information, 2021, 10(10): 667.
[4] SAWADA S, ITOH T, MISAKA T, et al. Streamline pair selection for comparative flow field visualization[J]. Visual Computing for Industry, Biomedicine, and Art, 2020, 3(1): 20.
[5] LOBO M J, TELEA A C, HURTER C. Feature driven combination of animated vector field visualizations[J]. Computer Graphics Forum, 2020, 39(3): 429-441.
[6] LARAMEE R S, WEISKOPF D, SCHNEIDER J, et al. Investigating swirl and tumble flow with a comparison of visualization techniques[C]//Proceedings of the IEEE Conference on Visualization. Los Alamitos: IEEE Computer Society Press, 2004: 51-58.
[7] PENG Z M, GENG Z, NICHOLAS M, et al. Visualization of flow past a marine turbine: the information-assisted search for sustainable energy[J]. Computing and Visualization in Science, 2013, 16(3): 89-103.
[8] YUSOFF Y A, MOHAMED F, SUNAR M S, et al. Comparative analysis on seed point placement and magnitude-based visual enhancement for streamlines generation[J]. International Journal of Digital Enterprise Technology, 2019, 1(4): 388.
[9] LI L Y, SHEN H W. Image-based streamline generation and rendering[J]. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(3): 630-640.
[10] SPENCER B, LARAMEE R S, CHEN G N, et al. Evenly spaced streamlines for surfaces: an image-based approach[J]. Computer Graphics Forum, 2009, 28(6): 1618-1631.
[11] ROSANWO O, PETZ C, PROHASKA S, et al. Dual streamline seeding[C]//Proceedings of the IEEE Pacific Visualization Symposium. Los Alamitos: IEEE Computer Society Press, 2009: 9-16.
[12] CHEN C K, YAN S, YU H F, et al. An illustrative visualization framework for 3D vector fields[J]. Computer Graphics Forum, 2011, 30(7): 1941-1951.
[13] HAN J, TAO J, WANG C L. FlowNet: a deep learning framework for clustering and selection of streamlines and stream surfaces[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(4): 1732-1744.
[14] 邵绪强, 程雅, 金佚钟. 表意性方法在三维流线可视化中的应用综述[J]. 图学学报, 2022, 43(5): 753-764.
SHAO X Q, CHENG Y, JIN Y Z. A review of the application of illustrative methods in 3D streamline visualization[J]. Journal of Graphics, 2022, 43(5): 753-764.
[15] 李忠伟, 徐斌, 李永, 等. 基于非结构化三角网格的海洋流场可视化[J]. 图学学报, 2022, 43(3): 486-495.
LI Z W, XU B, LI Y, et al. Visualization of ocean flow field based on unstructured triangular mesh[J]. Journal of Graphics, 2022, 43(3): 486-495.
[16] XU L J, LEE T Y, SHEN H W. An information-theoretic framework for flow visualization[J]. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(6): 1216-1224.
[17] 张沙, 解利军, 桂立业, 等. 基于信息熵的流线质量评估和布局算法[J]. 计算机工程与应用, 2015, 51(22): 181-186.
ZHANG S, XIE L J, GUI L Y, et al. Method of streamlines quality evaluation and seeds placement based on information entropy[J]. Computer Engineering and Applications, 2015, 51(22): 181-186.
[18] SONG H G, LIU S G. Dynamic fluid visualization based on multi-level density[C]//Proceedings of the 29th International Conference on Computer Animation and Social Agents. New York: ACM, 2016: 193-196.
[19] 黄冬梅, 杜艳玲, 张律文. 基于信息熵种子点选取的流线可视化[J]. 计算机工程与科学, 2018, 40(3): 411-417.
HUANG D M, DU Y L, ZHANG L W. Two information entropy-based seeding methods for 3D flow visualization[J]. Computer Engineering & Science, 2018, 40(3): 411-417.
[20] 牛婵, 梁猛, 高瑞波, 等. 基于信息熵的流场特征提取及可视化研究[J]. 燕山大学学报, 2019, 43(4): 364-369.
NIU C, LIANG M, GAO R B, et al. Research on feature extracting of flow field based on information entropy and visualization[J]. Journal of Yanshan University, 2019, 43(4): 364-369.
[21] DU X F, LIU H L, TSENG H W. Adaptive method to locate seed points based on information entropy and quadtree[J]. Sensors and Materials, 2021, 33(2): 789.
[22] LEOPARDI P. A partition of the unit sphere into regions of equal area and small diameter[J]. Electronic Transactions on Numerical Analysis, 2006, 25(12): 309-327.
[23] 黄智濒, 傅广涛, 曹凌婧, 等. 基于多视图聚类算法的三维流场关键点附近的流线筛选[J]. 计算机辅助设计与图形学学报, 2022, 34(12): 1930-1942.
HUANG Z B, FU G T, CAO L J, et al. Streamline selection around critical points of 3D flow fields by the multi-view clustering[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(12): 1930-1942. |