[1] 杨庆, 罗泳, 陈天朋, 等. 基于潮位的鼓网套筒智能冲洗方案研究[J]. 中国核电, 2023, 16(4): 599-604.
YANG Q, LUO Y, CHEN T P, et al. Study on the intelligent flushing scheme of the drum-net sleeve based on tide level[J]. China Nuclear Power, 2023, 16(4): 599-604.
[2] VILLARD P F, BOUDART M, ILEA I, et al. Anomaly detection on textured images with convolutional neural network for quality control of micrometric woven meshes[J]. Fluid Dynamic and Material Process, 2022, 18(6): 1639-1648.
[3] 俞文静, 刘航, 李梓瑞, 等. 基于图像增强和CNN的布匹瑕疵检测算法[J]. 计算机技术与发展, 2021, 31(5): 90-95.
YU W J, LIU H, LI Z R, et al. A fabric defect detec- tion algorithm based on image enhancement and CNN[J]. Computer Technology and Development, 2021, 31(5): 90-95.
[4] 彭晏飞, 袁晓龙, 陈炎康, 等. 改进YOLOv5s的带钢表面缺陷检测方法[J/OL]. 机械科学与技术: 1-9[2025-05-10]. https://doi.org/10.13433/j.cnki.1003-8728.20230254.
PENG Y F, YUAN X L, CHEN Y K, et al. Improved YOLOv5s strip surface defect detection method[J]. Mechanical Science and Technology for Aerospace Engineering: 1-9[2025-05-10]. https://doi.org/10.13433/j.cnki.1003-8728.20230254.
[5] 李斌, 曾筠婷. 基于多尺度上下文感知的绝缘子缺陷检测网络[J]. 高电压技术, 2022, 48(8): 2905-2914.
LI B, ZENG J T. Detection network for insulator defects based on multi-scale context awareness[J]. High Voltage Engineering, 2022, 48(8): 2905-2914.
[6] 裴少通, 张行远, 胡晨龙. 基于ER-YOLO算法的跨环境输电线路缺陷识别方法[J]. 电工技术学报, 2024, 39(9): 2825-2840.
PEI S T, ZHANG X Y, HU C L. The defect detection method for cross-environment power transmission line based on ER-YOLO algorithm[J]. Transactions of China Electrotechnical Society, 2024, 39(9): 2825-2840.
[7] ZHANG Y F, REN W, ZHANG Z, et al. Focal and effi cient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[8] 赵崇林, 朱江. 融合注意力和多尺度特征的航空发动机缺陷检测[J]. 北京航空航天大学学报, 2023, 67(5): 1-14.
ZHAO C L, ZHU J. Aero-engine defect detection based on fusing attention and multi-scale features[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 67(5): 1-14.
[9] YUN S, HAN D, OH S J, et al. CutMix: regularization strategy to train strong classifiers with localizable features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6023-6032.
[10] HAO W, ZHILI S. Improved Mosaic: algorithms for more complex images[J]. Journal of Physics: Conference Series, 2020, 1684(1): 012094.
[11] TAN M, PANG R, LE Q V. Efficientdet: scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10781-10790.
[12] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1251-1258.
[13] LI X, WANG W, HU X, et al. Selective kernel net works[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 510-519.
[14] 黄仁彬, 詹道桦. 基于加权多尺度特征融合的带钢表面缺陷检测算法[J]. 计算机集成制造系统, 2024, 30(3): 1-17.
HANG R B, ZHAN D H. Surface defect detection algo rithm for strip steel based on weighted multi-scale feature fusion[J]. Computer Integrated Manufacturing Systems, 2024, 30(3): 1-17.
[15] ROY A M, BOSE R, BHADURI J. A fast accurate fine-grain object detection model based on YOLOv4 deep neural network[J]. Neural Computing and Applications, 2022, 34(5): 3895-3921.
[16] ZHANG J, LIN S, DING L, et al. Multi-scale context aggregation for semantic segmentation of remote sensing images[J]. Remote Sensing, 2020, 12(4): 701.
[17] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12993-13000.
[18] LI Y, MAO H, GIRSHICK R, et al. Exploring plain vi sion transformer backbones for object detection[C]//Proceedings of the European Conference on Computer Vision, 2022: 280-296.
[19 KIRILLOV A, MINTUN E, RAVI N, et al. Segment any thing[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 4015-4026.
[20] WANG C Y, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[21] ZUO C, QIAN J, FENG S, et al. Deep learning in optical metrology: a review[J]. Light: Science & Applications, 2022, 11(1): 1-54. |