Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (14): 162-174.DOI: 10.3778/j.issn.1002-8331.2304-0007
• Graphics and Image Processing • Previous Articles Next Articles
GUI Lielin, HUANG Shan, YIN Yue
Online:
2024-07-15
Published:
2024-07-15
桂列林,黄山,印月
GUI Lielin, HUANG Shan, YIN Yue. Age Transformation Method Combined with Pixel2style2Pixel[J]. Computer Engineering and Applications, 2024, 60(14): 162-174.
桂列林, 黄山, 印月. 结合Pixel2style2Pixel的年龄转化方法[J]. 计算机工程与应用, 2024, 60(14): 162-174.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2304-0007
[1] DUONG N C, LUU K, QUACH G K, et al. Longitudinal face modeling via temporal deep restricted Boltzmann machines[C]//Proceedings of the 2016 IEEE International Conference on Computer Vision, 2016: 5772-5780. [2] WANG W, CUI Z, YAN Y, et al. Recurrent face aging[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2378-2386. [3] WANG W, YAN Y, CUI Z, et al. Recurrent face aging with hierarchical autoregressive memory[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(3): 654-668. [4] HELJAKKA A, SOLIN A, KANNALA J. Recursive chaining of reversible image-to-image translators for face aging[C]//Proceedings of the International Conference on Advanced Concepts for Intelligent Vision Systems, 2018: 309-320. [5] LI P, HUANG H, HU Y, et al. UVA: a universal variational framework for continuous age analysis[J]. arXiv:1904.00158, 2019. [6] YANG H, HUANG D, WANG Y, et al. Learning face age progression: a pyramid architecture of GANs[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 31-39. [7] LIU S, SUN Y, ZHU D, et al. Face aging with contextual generative adversarial nets[C]//Proceedings of the 25th ACM International Conference on Multimedia, 2017: 82-90. [8] PALSSON S, AGUSTSSON E, TIMOFTE R, et al. Generative adversarial style transfer networks for face aging[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018: 2084-2092. [9] ANTIPOV G, BACCOUCHE M, DUGELAY J L. Face aging with conditional generative adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Image Processing, 2017: 2089-2093. [10] ZHANG Z, SONG Y, QI H.Age progression/regression by conditional adversarial autoencoder[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 5810-5818. [11] HE Z, KAN M, SHAN S, et al. S2GAN: share aging factors across ages and share aging trends among individuals[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, 2019: 9440-9449. [12] OR-EL R, SENGUPTA S, FRIED O, et al. Lifespan age transformation synthesis[C]//Proceedings of the 16th European Conference on Computer Vision, 2020: 739-755. [13] WANG Z, TANG X, LUO W, et al. Face aging with identity-preserved conditional generative adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7939-7947. [14] WU Y, WANG R, GONG M, et al. Adversarial UV-transformation texture estimation for 3D face aging[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(7): 4338-4350. [15] DUAN M, LI K, LIAO Q, et al. DEF-Net: a face aging model by using different emotional learnings[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(5): 3012-3022. [16] 于海波. 基于生成对抗网络的人脸老化算法研究[D]. 北京: 北京交通大学, 2021. YU H B. Research on face aging algorithm based on generative adversarial network[D]. Beijing: Beijing Jiaotong University, 2021. [17] LI Q, LIU Y, SUN Z.Age progression and regression with spatial attention modules[C]//Proceedings of the National Conference on Artificial Intelligence, 2020: 11378-11385. [18]ABDAL R, ZHU P, MITRA N J, et al.Styleflow: attribute-conditioned exploration of StyleGAN-generated images using conditional continuous normalizing flows[J]. ACM Transactions on Graphics, 2021, 40(3): 1-21. [19] H?RK?NEN E, HERTZMANN A, LEHTINEN J, et al.GANspace: discovering interpretable GAN controls[C]//Advances in Neural Information Processing Systems, 2020, 33: 9841-9850. [20] LIU Y, LI Q, SUN Z, et al. Style intervention: how to achieve spatial disentanglement with style-based generators?[J]. arXiv:2011.09699, 2020. [21] SHEN Y, GU J, TANG X, et al.Interpreting the latent space of GANs for semantic face editing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 9243-9252. [22] PANTRAKI E, KOTROPOULOS C. Face aging using global and pyramid generative adversarial networks[J]. Machine Vision and Applications, 2021, 32(4): 82. [23] HUANG Z, CHEN S, ZHANG J, et al. AgeFlow: conditional age progression and regression with normalizing flows[J].arXiv:2105.07239, 2021. [24] KARRAS T, LAINE S, AILA T. A style-based generator architecture for generative adversarial networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4401-4410. [25] HE S, LIAO W, YANG M Y, et al. Disentangled lifespan face synthesis[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 3877-3886. [26] KARRAS T, LAINE S, AITTALA M, et al. Analyzing and improving the image quality of StyleGAN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 8110-8119. [27] ABDAL R, QIN Y, WONKA P. Image2StyleGAN: how to embed images into the StyleGAN latent space?[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 4432-4441. [28] RICHARDSON E, ALALUF Y, PATASHNIK O, et al. Encoding in style: a StyleGAN encoder for image-to-image translation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 2287-2296. [29] WU Z, LISCHINSKI D, SHECHTMAN E. StyleSpace analysis: disentangled controls for StyleGAN image generation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 12863-12872. [30] RAMANATHAN N, CHELLAPPA R.Modeling age progression in young faces[C]//Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006: 387-394. [31] GUO C, FAN B, ZHANG Q, et al.AugFPN: improving multi-scale feature learning for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 12595-12604. [32] ALALUF Y, PATASHNIK O, COHEN-OR D. Only a matter of style: age transformation using a style-based regression model[J]. ACM Transactions on Graphics, 2021, 40(4): 1-12. [33] MECHREZ R, TALMI I, ZELNIK-MANOR L. The contextual loss for image transformation with non-aligned data[C]//Proceedings of the European Conference on Computer Vision, 2018: 768-783. [34] DENG J, GUO J, XUE N, et al. ArcFace: additive angular margin loss for deep face recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 4690-4699. [35] ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 586-595. [36] LIU Z, LUO P, WANG X, et al. Deep learning face attributes in the wild[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 3730-3738. [37] WRIGHT L, DEMEURE N. Ranger21: a synergistic deep learning optimizer[J].arXiv:2106.13731, 2021. [38] ZHANG M, LUCAS J, BA J, et al. Lookahead optimizer: k steps forward, 1 step back[J]. arXiv:1907.08610, 2019. [39] PARKHI O M, VEDALDI A, ZISSERMAN A .Deep face recognition[C]//Proceedings of the British Machine Vision Conference, 2015. [40] HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local nash equilibrium[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6629-6640. |
[1] | WANG Ru, LIU Daming, ZHANG Jian. Wear-YOLO:Research on Detection Methods of Safety Equipment for Power Personnel in Substations [J]. Computer Engineering and Applications, 2024, 60(9): 111-121. |
[2] | LI Zhonghua, LIN Chujun, ZHU Hengliang, LIAO Shiyu, BAI Yunqi. Small Object Detection Based on Structure Perception and Global Context Information [J]. Computer Engineering and Applications, 2024, 60(9): 292-298. |
[3] | CAO Ganggang, WANG Banghai, SONG Yu. Cross-Modal Re-Identification Light Weight Network Combined with Data Enhancement [J]. Computer Engineering and Applications, 2024, 60(8): 131-139. |
[4] | ZOU Zhentao, LI Zeping. Improved YOLOv7 for UAV Image Object Detection [J]. Computer Engineering and Applications, 2024, 60(8): 173-181. |
[5] | JIANG Xingwang, ZHAO Xingqiang. Improved YOLOv7 Algorithm for Wood Surface Defect Detection [J]. Computer Engineering and Applications, 2024, 60(7): 175-182. |
[6] | LIANG Xiuman, LI Ran, YU Haifeng, LIU Zhendong. Improved Underwater Object Detection Algorithm of YOLOv7 [J]. Computer Engineering and Applications, 2024, 60(6): 89-99. |
[7] | YANG Yonggang, XIE Ruifu, GONG Zechuan. Improved YOLOv7-tiny UAV Target Detection Algorithm [J]. Computer Engineering and Applications, 2024, 60(6): 121-129. |
[8] | QU Haicheng, YUAN Xudong, LI Jiaqi. Lightweight Object Detection Method for Constrained Environments [J]. Computer Engineering and Applications, 2024, 60(6): 274-281. |
[9] | HE Yuting, CHE Jin, WU Jinman, MA Pengsen. Research on Pedestrian Multi-Object Tracking Algorithm Under OMC Framework [J]. Computer Engineering and Applications, 2024, 60(5): 172-182. |
[10] | PENG Yanfei, ZHAO Tao, CHEN Yankang, YUAN Xiaolong. UAV Small Object Detection Algorithm Based on Context Information and Feature Refinement [J]. Computer Engineering and Applications, 2024, 60(5): 183-190. |
[11] | LI Xu, SONG Huansheng, SHI Qin, ZHANG Zhaoyang, LIU Zedong, SUN Shijie. CIEFRNet:Abandoned Objects Detection Algorithm for Highway [J]. Computer Engineering and Applications, 2024, 60(5): 336-346. |
[12] | CHEN Junjie, ZHOU Yongxia, ZU Jiazhen, SHEN Wei, ZHAO Ping. Dual-Branch Low-Light Image Enhancement Combined with Dense Wavelet Transform [J]. Computer Engineering and Applications, 2024, 60(4): 200-210. |
[13] | YANG Yuanyuan, LU Tongyu, CUI Jun, XU Wenfu. Application of ADASVM-CSLINEX Model Considering Misclassification Cost [J]. Computer Engineering and Applications, 2024, 60(3): 348-356. |
[14] | NIU Xinyu, MAO Pengjun, DUAN Yuntao, LOU Xiaoheng. Research on Lightweight Improved Algorithm for Indoor Target Detection Based on YOLOv5s [J]. Computer Engineering and Applications, 2024, 60(3): 109-118. |
[15] | WU Mingjie, YUN Lijun, CHEN Zaiqing, ZHONG Tianze. Improved YOLOv5s Small Object Detection Algorithm in UAV View [J]. Computer Engineering and Applications, 2024, 60(2): 191-199. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||