[1] 蒋来. 浅谈高速公路抛洒物危害与对策[J]. 道路交通管理, 2021(4): 36-37.
JIANG L. A brief discussion on the hazards and countermeasures of abandoned objects in highway[J]. Road Traffic Management, 2021(4): 36-37.
[2] FU H, XIANG M, MA H, et al. Abandoned object detection in highway scene[C]//2011 6th International Conference on Pervasive Computing and Applications, 2011: 117-121.
[3] ZENG Y, LAN J, RAN B, et al. A novel abandoned object detection system based on three-dimensional image information[J]. Sensors, 2015, 15(3): 6885-6904.
[4] 汪贵平, 马力旺, 郭璐, 等. 高速公路抛洒物事件图像检测算法[J]. 长安大学学报 (自然科学版), 2017, 37(5): 81-88.
WANG G P, MA L W, GUO L, et al. Image detection algorithm for incident of abandoned objects in highway[J]. Journal of Chang’an University (Natural Science Edition), 2017, 35(5): 81-88.
[5] 李清瑶, 邹皓, 赵群, 等. 基于帧间差分自适应法的车辆抛洒物检测[J]. 长春理工大学学报 (自然科学版), 2018, 41(4): 108-113.
LI Q Y, ZOU H, ZHAO Q, et al. Vehicles throwing detection based on inter-frame difference adaptive method[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2018, 41(4): 108-113.
[6] 王立志. 长短效双背景模型下交通遗撒物识别新方法[J]. 计算机应用研究, 2020, 37(1): 412-413.
WANG L Z. Novel method for traffic abandoned objects recognition based on long-term and short-term dual background model[J]. Application Research of Computers, 2020, 37(1): 412-413.
[7] 金瑶, 张锐, 尹东. 城市道路视频中小像素目标检测[J]. 光电工程, 2019, 46(9): 76-83.
JIN Y, ZHANG R, YIN D. Object detection for small pixel in urban roads videos[J]. Opto-Electronic Engineering, 2019, 46(9): 76-83.
[8] 张文风, 于艳玲. 基于Faster R-CNN的高速公路抛落物检测[J]. 上海船舶运输科学研究所学报, 2021, 44(1): 70-75.
ZHANG W F, YU Y L. Detection of dropped objects on highway with Faster R-CNN[J]. Journal of Shanghai Ship and Shipping Research Institute, 2021, 44(1): 70-75.
[9] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[10] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556,2014.
[11] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[C]//13th European Conference on Computer Vision, Zurich, Switzerland, September 6-12, 2014: 818-833.
[12] 章悦, 张亮, 谢非, 等. 基于实例分割模型优化的道路抛洒物检测算法[J]. 计算机应用, 2021, 41(11): 3228-3233.
ZHANG Y, ZHANG L, XIE F, et al. Road abandoned object detection algorithm based on optimized instance segmentation model[J]. Journal of Computer Applications, 2021, 41(11): 3228-3233.
[13] 周勇, 张炳振, 张枭勇, 等. 融合改进YOLO和背景差分的道路抛洒物检测算法[J]. 交通信息与安全, 2022, 40(5): 112-119.
ZHOU Y, ZHANG B Z, ZHANG X Y, et al. A detection method for abandoned materials on road surface based on an improved YOLO and background differencing algorithm[J]. Transportation Information and Safety, 2022, 40(5): 112-119.
[14] 姜子渊. 高速公路道路异常检测研究与实现[D]. 西安: 西安工业大学, 2023.
JIANG Z Y. Research and implementation of road anomaly detection on expressway[D]. Xi’an: Xi’an Technological University, 2023.
[15] LIU W, LI J, LIU Y, et al. Research on the lightweight detection network of abandoned objects in freeway based on video[C]//Proceedings of the SPIE, 2023.
[16] TONG Z, CHEN Y, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arXiv:2301.10051,2023.
[17] LI Y, YAO T, PAN Y, et al. Contextual transformer networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(2): 1489-1500.
[18] WANG C Y, LIAO H, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2020.
[19] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.
[20] LIU Z, MAO H, WU C Y, et al. A convnet for the 2020s[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 11976-11986.
[21] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 10012-10022.
[22] TOUVRON H, CORD M, SABLAYROLLES A, et al. Going deeper with image transformers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 32-42.
[23] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[24] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
[25] ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8574-8586.
[26] WANG P, CHEN P, YUAN Y, et al. Understanding convolution for semantic segmentation[C]//2018 IEEE Winter Conference on Applications of Computer Vision, 2018: 1451-1460.
[27] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 618-626.
[28] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems, 2017, 39(6): 1137-1149.
[29] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv:2207.02696,2022.
[30] SANDLER M, HOWARD A, ZHU M, et al. Mobilenetv2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
[31] GE Z, LIU S, WANG F, et al. Yolox: exceeding YOLO series in 2021[J]. arXiv:2107.08430,2021.
[32] ZHU X, SU W, LU L, et al. Deformable DETR: deformable transformers for end-to-end object detection[J]. arXiv:2010.
04159,2020.
[33] YANG J, LI C, DAI X, et al. Focal modulation networks[C]//Advances in Neural Information Processing Systems, 2022: 4203-4217. |