Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (3): 348-356.DOI: 10.3778/j.issn.1002-8331.2210-0379
• Engineering and Applications • Previous Articles
YANG Yuanyuan, LU Tongyu, CUI Jun, XU Wenfu
Online:
2024-02-01
Published:
2024-02-01
杨园园,鲁统宇,崔俊,许文甫
YANG Yuanyuan, LU Tongyu, CUI Jun, XU Wenfu. Application of ADASVM-CSLINEX Model Considering Misclassification Cost[J]. Computer Engineering and Applications, 2024, 60(3): 348-356.
杨园园, 鲁统宇, 崔俊, 许文甫. 考虑错分代价的ADASVM-CSLINEX模型及应用[J]. 计算机工程与应用, 2024, 60(3): 348-356.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2210-0379
[1] MEYER H, KüHNLEIN M, APPELHANS T, et al. Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals[J].Atmospheric Research, 2016, 169: 424-433. [2] ABAYOMI-ALLI O, MISRA S, ABAYOMI-ALLI A, et al. A review of soft techniques for SMS spam classification: methods, approaches and applications[J].Engineering Applications of Artificial Intelligence, 2019, 86: 197-212. [3] KAYMAK S, HELWAN A, UZUN D. Breast cancer image classification using artificial neural networks[J].Procedia Computer Science, 2017, 120: 126-131. [4] VLAHOU A, SCHORGEW J O, GREGORY B W, et al. Diagnosis of ovarian cancer using decision tree classification of mass spectral data[J].Journal of Biomedicine and Biotechnology, 2003(5): 308-314. [5] VIAENE S, DERRIG R A, DEDENE G. Cost-sensitive learning and decision making for Massachusetts PIP claim fraud data[J].International Journal of Intelligent Systems, 2004, 19(12): 1197-1215. [6] SAADALLAH A, BüSCHER J, ABDULAATY O, et al. Explainable predictive quality inspection using deep learning in electronics manufacturing[J].Procedia CIRP, 2022, 107: 594-599. [7] SUN J, FJITA H, CHEN P, et al. Dynamic financial distress prediction with concept drift based on time weighting combined with Adaboost support vector machine ensemble[J]. Knowledge-Based Systems, 2017, 120: 4-14. [8] HAN Y T, SUN Q, YU Z X. Research on financial early warning of listed companies based on Lasso-logistic model[C]//Proceedings of the Third International Conference on Economic and Business Management (FEBM), 2018: 263-267. [9] HUANG C L, CHEN M C, WANG C J. Credit scoring with a data mining approach based on support vector machines[J].Expert Systems with Applications, 2007, 33(4): 847-856. [10] 谢琪, 程耕国, 徐旭.基于神经网络集成学习股票预测模型的研究[J].计算机工程与应用, 2019, 55(8): 238-243. XIE Q, CHENG G G, XU X. Research based on stock predicting model of neural networks ensemble learning[J].Computer Engineering and Applications, 2019, 55(8): 238-243. [11] BASAK S, KAR S, SAHA S, et al. Predicting the direction of stock market prices using tree-based classifiers[J].The North American Journal of Economics and Finance, 2019, 47: 552-567. [12] CHENG Z W, CHEN C S, QIU X H, et al. An improved KNN classification algorithm based on sampling[C]//Proceeding of the Advances in Materials, Machinery, Electrical Engineering (AMMEE), 2017: 220-225. [13] CHEN R, ZHANG C X, GUO J, et al. Application of Naive Bayesian algorithms in E-mail classification[C]//Chinese Automation Congress (CAC), 2019: 3933-3938. [14] KHAIDEM L, SAHA S, DEY S R. Predicting the direction of stock market prices using random forest[J].arXiv:1605. 00003, 2016. [15] SUN Y T, ZHAO H Q. Stock selection model based on advanced AdaBoost algorithm[C]//Proceedings of the Seventh International Conference on Modelling, Identification and Control (ICMIC), 2015: 290-296. [16] 罗泽南.基于集成树模型的Stacking量化选股策略研究[J].中国物价, 2021(2): 81-84. LUO Z N. Research on quantitative stock selection strategy based on Stacking ensemble tree model[J].China Price, 2021(2): 81-84. [17] LAN J, HU M Y, PATUWO E, et al. An investigation of neural network classifiers with unequal misclassification costs and group sizes[J]. Decision Support Systems, 2010, 48(4): 582-591. [18] ELKAN C. The foundations of cost-sensitive learning[C]// Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, 2001: 973-978. [19] 王超发, 孙静春.考虑错分代价的LogitBoost算法及其在手机用户价值分类中的应用[J].系统工程理论与实践, 2019, 39(10): 2702-2712. WANG C F, SUN J C. LogitBoost algorithm considering the cost of misclassification and its application in the classification of mobile user value[J].Systems Engineering-Theory & Practice, 2019, 39(10): 2702-2712. [20] ZHOU Z H, LIU X Y. On multi‐class cost‐sensitive learning[J]. Computational Intelligence, 2010, 26(3): 232-257. [21] 任婷婷, 鲁统宇, 崔俊.基于改进AdaBoost算法的动态不平衡财务预警模型[J].数量经济技术经济研究, 2021, 38(11): 182-197. REN T T, LU T Y, CUI J. Dynamic imbalanced financial distress prediction model based on improved AdaBoost algorithm [J].Journal of Quantitative & Technological Economics, 2021, 38(11): 182-197. [22] ZADROZNY B, LANGFORD J, ABE A. Cost-sensitive learning by cost-proportionate example weighting[C]//Third IEEE International Conference on Data Mining, 2003: 435-442. [23] TING K M. An instance-weighting method to induce cost-sensitive trees[J].IEEE Transactions on Knowledge and Data Engineering, 2002, 14(3): 659-665. [24] DOMINGOS P. MetaCost: a general method for making classifiers cost-sensitive[C]//Proceedings of the Fifth International Conference on Knowledge Discovery and Data Mining, 1999: 155-164. [25] 凌晓峰, SHENG Victor S. 代价敏感分类器的比较研究 (英文)[J].计算机学报, 2007, 30(8): 1203-1211. LING C X, SHENG V S. A comparative study of cost-sensitive classifiers[J].Chinese Journal of Computers, 2007, 30(8): 1203-1211. [26] VADERA S. CSNL: a cost-sensitive non-linear decision tree algorithm[J].ACM Transactions on Knowledge Discovery from Data, 2010, 4(2): 1-35. [27] SAHIN Y, BULKAN S, DUMAN E. A cost-sensitive decision tree approach for fraud detection[J].Expert Systems with Applications, 2013, 40(15): 5916-5923. [28] QIN Z X, WANG A T, ZHANG C Q, et al. Cost-sensitive classification with k-nearest neighbors[C]//International Conference on Knowledge Science, Engineering and Management, 2013: 112-131. [29] BAHNSEN A C, AOUADA D, OTTERSTEN B. Example-dependent cost-sensitive logistic regression for credit scoring[C]//Proceedings of the Thirteenth International Conference on Machine Learning and Applications (ICMLA), 2014: 263-269. [30] LIN Y, LEE Y, WAHBA G. Support vector machines for classification in nonstandard situations[J].Machine Learning, 2002, 46: 191-202. [31] IRANMEHR A, MASNADI-SHIRAZI H, VASCONCELOS N. Cost-sensitive support vector machines[J].Neurocomputing, 2019, 343: 50-64. [32] MASNADI-SHIRAZI H, VASCONCELOS N. Cost-sensitive boosting[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(2): 294-309. [33] FAN W, STOLFO S J, ZHANG J X, et al. AdaCost: misclassification cost-sensitive Boosting[C]//Proceedings of the Sixteenth International Conference on Machine Learning, 1999: 97-105. [34] VARIAN H B. A Bayesian approach to real estate assessment[M]//Studies in Bayesian econometric and statistics in honor of Leonard J. savage.[S.l.]:North-Holland Public Co., 1975: 195-208. [35] MA Y, ZHAO K, WANG Q, et al. Incremental cost-sensitive support vector machine with Linear-Exponential loss[J].IEEE Access, 2020, 8: 149899-149914. [36] FU S J, YU X Y, TIAN Y J. Cost sensitive v-support vector machine with LINEX loss[J].Information Processing and Management, 2022, 59(2). [37] FU Y, CAO S A, PANG T. A sustainable quantitative stock selection strategy based on dynamic factor adjustment[J]. Sustainability, 2020, 12(10). [38] 王晓丹, 孙东延, 郑春颖, 等.一种基于AdaBoost的SVM分类器[J].空军工程大学学报(自然科学版), 2006(6): 54-57. WANG X D, SUN D Y, ZHENG C Y, et al. A combined SVM classifier based on AdaBoost[J].Journal of Air Force Engineering University, 2006(6): 54-57. [39] 李斌, 邵新月, 李玥阳.机器学习驱动的基本面量化投资研究[J].中国工业经济, 2019(8): 61-79. LI B, SHAO X Y, LI Y Y. Research on machine learning driven quantamental investing[J].China Industrial Economics, 2019, 377(8): 61-79. |
[1] | WANG Ruofan, WANG Haodong, SHI Lianshuan. EEG Recognition of Epilepsy Based on Complex Network and GA-PSO [J]. Computer Engineering and Applications, 2023, 59(20): 119-128. |
[2] | SU Qing, LIN Jiarui, HUANG Haibin, HUANG Jianfeng. Android Malicious Application Family Classification Model Incorporating MAML and CBAM [J]. Computer Engineering and Applications, 2023, 59(2): 271-279. |
[3] | LUO Min, ZHOU Ligang, LIU Xinyue, ZHU Jiaming, CHEN Huayou. Data Driven Optimal Combination Evaluation Model of Enterprise Credit Risk [J]. Computer Engineering and Applications, 2023, 59(10): 306-313. |
[4] | ZHOU Yuqun, ZHANG Desheng, ZHANG Xiao. Improved Robust Fuzzy Twin Support Vector Machine Algorithm [J]. Computer Engineering and Applications, 2023, 59(1): 140-148. |
[5] | MA Tingting, YANG Zhixia, YE Junyou. Robust Twin Parametric-Margin Support Vector Machine for Pattern Classification [J]. Computer Engineering and Applications, 2022, 58(9): 74-82. |
[6] | CHEN Lu, GAO Cuifang, LU Haiyan. Prediction of Secondary Structure of Protein Using Dual-Tree Complex Wavelet Transform [J]. Computer Engineering and Applications, 2022, 58(3): 230-234. |
[7] | TIAN Lu, LIU Sheng. Arithmetic Optimization Algorithm Assisted by Support Vector Machine and Its Application [J]. Computer Engineering and Applications, 2022, 58(24): 73-82. |
[8] | XIE Mengda, SUN Peng, ZHANG Zhihao, LANG Yubo, ZHOU Chunbing, SHAN Daguo. Improved Face Tracking Algorithm in Skin-Like Background [J]. Computer Engineering and Applications, 2022, 58(18): 205-217. |
[9] | JIN Qifan, CHEN Li, XU Mingliang, JIANG Xiaoheng. Robust Least Squares Twin Support Vector Machine and Its Sparse Algorithm [J]. Computer Engineering and Applications, 2022, 58(18): 78-89. |
[10] | TIAN Hongli, YANG Yingying, YAN Huiqiang. Research on Stock Price Turning Point Prediction Based on Entanglement Theory and Deep Learning [J]. Computer Engineering and Applications, 2022, 58(16): 319-325. |
[11] | MENG Xianwei, TANG Jinjun, WANG Zhe. Trajectory Prediction of Vehicles Based on LSTM-AdaBoost Model Considering Lane-Changing Intention [J]. Computer Engineering and Applications, 2022, 58(13): 280-287. |
[12] | GAO Yikai, PENG Li, XU Longzhuang. Flame Recognition Method Using TWSVM with Improved Artificial Fish Swarm Algorithm [J]. Computer Engineering and Applications, 2021, 57(8): 204-213. |
[13] | HAN Weiyu, CHENG Longsheng. Research on Roling Bearing Failure Mode Classification Based on MTS and SVM [J]. Computer Engineering and Applications, 2021, 57(6): 239-246. |
[14] | LEI Henglin, Gulanbaier Tuerhong, Mairidan Wushouer, ZHANG Dongmei. Review of Novelty Detection [J]. Computer Engineering and Applications, 2021, 57(5): 47-55. |
[15] | WEN Jiebin, YANG Wenzhong, MA Guoxiang, ZHANG Zhihao, LI Hailei. Micro-expression Recognition Based on Apex Frame Optical Flow and Convolutional Autoencoder [J]. Computer Engineering and Applications, 2021, 57(4): 127-133. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||