[1] DEVI M P A, LATHA T, SULOCHANA C H. Iterative thresholding based image segmentation using 2D improved Otsu algorithm[C]//Proceedings of the Communication Technologies, 2015: 145-149.
[2] 徐欢, 李振璧, 姜媛媛, 等. 基于Open CV和改进Canny算子的路面裂缝检测[J]. 计算机工程与设计, 2014, 35(12): 4254-4258.
XU H, LI Z B, JIANG Y Y, et al. Pavement crack detection based on OpenCV and improved Canny operator[J]. Computer Engineering and Design, 2014, 35(12): 4254-4258.
[3] HU W B,WANG W D,AI C B,et al. Machine vision-based surface crack analysis for transportation infrastructure[J]. Automation in Construction, 2021, 132:103973.
[4] GIRSHICK R, DONAHUE J, DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2014: 582-587.
[5] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[6] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[7] HE K M,GKIOXARI G,DOLLáR P,et al.Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[8] 孙朝云, 裴莉莉, 李伟, 等. 基于改进Faster R-CNN的路面灌封裂缝检测方法[J]. 华南理工大学学报 (自然科学版), 2020, 48(2): 84-93.
SUN Z Y, PEI L L, LI W, et al. Pavement grouting crack detection method based on improved Faster R-CNN[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(2): 84-93.
[9] 牛慧余, 包腾飞, 李扬涛, 等. 基于改进Mask R-CNN的混凝土坝裂缝像素级检测方法[J]. 水利水电科技进展, 2023, 43(1): 87-92.
NIU H Y, BAO T F, LI Y T, et al. Pixel-level crack detection method of concrete dam based on improved mask R-CNN[J]. Advances in Science and Technology of Water Resources, 2023, 43(1): 87-92.
[10] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multi-box detector[C]//Proceedings of the European Conference on Computer Vision, 2016: 21-37.
[11] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08)[2024-01-02]. https://arxiv.org/abs/1804.02767.
[12] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4:optimal speed and accuracy of object detection[EB/OL].(2020-04-23)[2024-01-02]. http://arxiv.org/abs/2004.10934.
[13] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/ CVF Conference on Computer Vision and Pattern Recognition,2023: 7464-7475.
[14] 韩豫, 张萌, 李宇宏, 等. 基于深度学习和ArcMap的路面病害智能综合检测方法[J]. 江苏大学学报 (自然科学版), 2023, 44(4): 490-496.
HAN Y, ZHANG M, LI Y H, et al. Intelligent comprehensive detection method of pavement diseases based on deep learning and ArcMap[J]. Journal of Jiangsu University (Natural Science Edition), 2023, 44(4): 490-496.
[15] CUI X N, WANG Q C, DAI J P, et al. Intelligent recognition of erosion damage to concrete based on improved YOLO-v3[J].Materials Letters, 2021, 302: 130363.
[16] 安学刚, 党建武, 王阳萍, 等. 基于改进YOLOv4的无人机影像路面病害检测方法[J]. 无线电工程, 2023, 53(6): 1285-1294.
AN X G, DANG J W, WANG Y P, et al. UAV image pavement disease detection based on improved YOLOv4[J]. Radio Engineering, 2023, 53(6): 1285-1294.
[17] WU C G, YE M, ZHANG J L, et al. YOLO-LWNet: a lightweight road damage object detection network for mobile terminal devices[J]. Sensors, 2023, 23(6): 3268.
[18] 王海群, 王炳楠, 葛超. 重参数化YOLOv8路面病害检测算法[J]. 计算机工程与应用, 2024, 60(5): 191-199.
WANG H Q, WANG B N, GE C. Re-parameterized YOLOv8 pavement disease detection algorithm[J].Computer Engineering and Applications, 2024, 60(5): 191-199.
[19] 王春梅, 刘欢. YOLOv8-VSC: 一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160.
WANG C M, LIU H. YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science & Technology, 2024, 18(1): 151-160.
[20] WANG W H, DAI J F, CHEN Z, et al. InternImage: exploring large-scale vision foundation models with deformable convolutions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 14408-14419.
[21] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2017: 1800-1807.
[22] LI H L, LI J, WEI H B, et al. Slim-neck by GSConv: a better design paradigm of detector architectures for autonomous vehicles[EB/OL].(2022-06-06)[2023-09-15]. https://arxiv.org/abs/2206.02424.
[23] GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL].(2021-08-06)[2023-10-06]. https://arxiv.org/abs/2107.08430.
[24] YU Z P, HUANG H B, CHEN W J, et al.YOLO-FaceV2: a scale and occlusion aware face detector[J]. arXiv:2208.02019, 2022.
[25] HAN S, MAO H Z, DALLY W J. Deep compression: compressing deep neural networks with pruning[J]. Fiber, 2015, 56(4): 3-7.
[26] ARYA D, MAEDA H, GHOSH S K, et al. RDD2022: a multi-national image dataset for automatic road damage detection[J]. arXiv:2209.08538, 2022.
[27] LV W Y, ZHAO Y A, XU S L, et al. DETRs beat YOLOs on real-time object detection[EB/OL]. (2023-07-16) [2023-12-17]. https://arxiv.org/abs/2304.08069.
[28] WANG C Y, YEH H I, LIAO H P. YOLOv9: learning what you want to learn using programmable gradient information[EB/OL]. (2024-02-21) [2024-03-25]. https://arxiv.org/abs/2402.13616.
[29] ZHU J Q, ZHONG J T, MA T, et al. Pavement distress detection using convolutional neural networks with images captured via UAV[J]. Automation in Construction, 2022, 133:103991. |