[1] 葛世荣, 郝尚清, 张世洪, 等. 我国智能化采煤技术现状及待突破关键技术[J]. 煤炭科学技术, 2020, 48(7): 28-46.
GE S R, HAO S Q, ZHANG S H, et al. Status of intelligent coal mining technology and potential key technologies in China[J]. Coal Science and Technology, 2020, 48(7): 28-46.
[2] 程德强, 徐进洋, 寇旗旗, 等. 融合残差信息轻量级网络的运煤皮带异物分类[J]. 煤炭学报, 2022, 47(3): 1361-1369.
CHENG D Q, XU J Y, KOU Q Q, et al. Lightweight network based on residual information for foreign body classification on coal conveyor belt[J]. Journal of China Coal Society, 2022, 47(3): 1361-1369.
[3] WANG X, NIU D, LUO P, et al. A safety helmet and protective clothing detection method based on Improved-YoloV3[C]//2020 Chinese Automation Congress (CAC), 2020: 5437-5441.
[4] REDMON J, FARHADI A. YOLOv3: an incremental improvement[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018: 101-104.
[5] LI Z, XIE W, ZHANG L, et al. Toward efficient safety helmet detection based on YoloV5 with hierarchical positive sample selection and box density filtering[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-14.
[6] 徐守坤, 王雅如, 顾玉宛, 等. 基于改进Faster RCNN的安全帽佩戴检测研究[J]. 计算机应用研究, 2020, 37(3): 901-905.
XU S K, WANG Y R, GU Y W, et al. Safety helmet wearing detection study based on improved Faster RCNN[J]. Application Research of Computers, 2020, 37(3): 901-905.
[7] SHEN J, XIONG X, LI Y, et al. Detecting safety helmet wearing on construction sites with bounding‐box regression and deep transfer learning[J]. Computer‐Aided Civil and Infrastructure Engineering, 2020, 36(2): 180-196.
[8] 谢斌红, 袁帅, 龚大立. 基于RDB-YOLOv4的煤矿井下有遮挡行人检测[J]. 计算机工程与应用, 2022, 58(5): 200-207.
XIE B H, YUAN S, GONG D L. Detection of blocked pedestrians based on RDB-YOLOv4 in coal mine[J]. Computer Engineering and Applications, 2022, 58(5): 200-207.
[9] LI N, GONG X. An image preprocessing model of coal and gangue in high dust and low light conditions based on the joint enhancement algorithm[J]. Computational Intelligence and Neuroscience, 2021: 2436486.
[10] BOCHKOVSKIY A, WANG C, LIAO H. Yolov4: optimal speed and accuracy of object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 9-12.
[11] WANG C, LIAO H, WU Y, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 390-391.
[12] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018: 8759-8768.
[13] ZHOU D Q, HOU Q B, CHEN Y P, et al. Rethinking bottleneck structure for efficient mobile network design[C]//Proceedings of the European Conference on Computer Vision(ECCV), 2020: 680-697.
[14] SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018: 4510-4520.
[15] ZENG N, WU P, LI H, et al. A small-sized object detection oriented multi-scale feature fusion approach with application to defect detection[J]. IEEE Transactions on Instrumentation and Measurementvol, 2022, 71: 3507014.
[16] SAINI R, JHA N, DAS B, et al. ULSAM: ultra-lightweight subspace attention module for compact convolutional neural networks[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), 2020: 1616-1625.
[17] LU X C, JI J, XING Z, et al. Attention and feature fusion SSD for remote sensing object detection[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-9.
[18] 何丽, 张红, 房婉琳. 融合多尺度边界特征的显著实例分割[J]. 计算机科学与探索, 2022, 16(8): 1865-1876.
HE L, ZHANG H, FANG W L. Salient instance segmentation via multiscale boundary characteristic network[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1865-1876.
[19] 余震, 何留杰, 王振飞. 基于中智理论与方向α-均值的图像边缘检测算法[J]. 电子测量与仪器学报, 2020, 34(3): 43-50.
YU Z, HE L J, WANG Z F. Image edge detection based on intelligence theory and direction α-mean[J]. Journal of Electronic Measurement and Instrument, 2020, 34(3): 43-50.
[20] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI), 2020: 12993-13000.
[21] LIU A J, LU J, ZHANG G Q, et al. Concept drift detection via equal intensity k-means space partitioning[J]. IEEE Transactions on Cybernetics, 2021, 51(6): 3198-3211.
[22] TAN M, PANG R, LE Q. EfficientDet: scalable and efficient object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 10778-10787.
[23] GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:2107.08430, 2021.
[24] ZHANG Y, REN W, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[25] 朱炳宇, 刘朕, 张景祥. 融合Grad-CAM和卷积神经网络的COVID-19检测算法[J]. 计算机科学与探索, 2022, 16(9): 2108-2120.
ZHU B Y, LIU Z, ZHANG J X. COVID-19 detection algorithm combining Grad-CAM and convolutional neural network[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2108-2120. |