[1] 吴越, 杨延竹, 苏雪龙, 等. 基于Faster R-CNN的钢板表面缺陷检测方法[J]. 东华大学学报 (自然科学版), 2021, 47(3): 84-89.
WU Y, YANG Y Z, SU X L, et al. Surface defect detection method of steel plate based on Faster R-CNN[J]. Journal of Donghua University (Natural Science), 2021, 47(3): 84-89.
[2] 杨莉, 张亚楠, 王婷婷, 等. 基于改进Faster R-CNN的钢材表面缺陷检测方法[J]. 吉林大学学报 (信息科学版), 2021, 39(4): 409-415.
YANG L, ZHANG Y N, WANG T T, et al. New method for steel surface defect detection based on improved Faster R-CNN[J]. Journal of Jilin University (Information Science Edition), 2021, 39(4): 409-415.
[3] 韩强, 张喆, 续欣莹, 等. 基于FF R-CNN钢材表面缺陷检测算法[J]. 太原理工大学学报, 2021, 52(5): 754-763.
HAN Q, ZHANG Z, XU X Y, et al. Steel surface defect detection based on FF R-CNN[J]. Journal of Taiyuan University of Technology, 2021, 52(5): 754-763.
[4] 王海云, 王剑平, 罗付华. 融合多层次特征Faster R-CNN的金属板带材表面缺陷检测研究[J]. 机械科学与技术, 2021, 40(2): 262-269.
WANG H Y, WANG J P, LUO F H. Study on surface defect detection of metal sheet and strip using Faster R-CNN with multilevel feature[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 262-269.
[5] 胡江宇, 贾树林, 马双宝. 基于改进级联Faster RCNN的PCB表面缺陷检测算法[J]. 仪表技术与传感器, 2022(7): 106-110.
HU J Y, JIA S L, MA S B. PCB surface defect detection algorithm based on improved cascaded Faster RCNN[J]. Instrument Technique and Sensor, 2022(7): 106-110.
[6] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision (ECCV 2016), Amsterdam, The Netherlands, October 11-14, 2016: 21-37.
[7] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[8] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[9] REDMON J, FARHADI A. Yolov3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[10] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv: 2004.10934, 2020.
[11] 程婧怡, 段先华, 朱伟. 改进YOLOv3的金属表面缺陷检测研究[J]. 计算机工程与应用, 2021, 57(19): 252-258.
CHENG J Y, DUAN X H, ZHU W. Research on metal surface defect detection by improved YOLOv3[J]. Computer Engineering and Applications, 2021, 57(19): 252-258.
[12] 王紫玉, 张果, 杨奇, 等. 基于YOLOv4的铜带表面缺陷识别研究[J]. 光电子·激光, 2022, 33(2): 163-170.
WANG Z Y, ZHANG G, YANG Q, et al. Research on surface defect recognition of copper strip based on YOLOv4[J]. Journal of Optoelectronics·Laser, 2022, 33(2): 163-170.
[13] 沈希忠, 吴迪. 基于YOLO的铝型材料表面小缺陷检测[J]. 浙江工业大学学报, 2022, 50(4): 372-380.
SHEN X Z, WU D. Detection of small defects on aluminum profile surface based on YOLO[J]. Journal of Zhejiang University of Technology, 2022, 50(4): 372-380.
[14] 曹义亲, 伍铭林, 徐露. 基于改进YOLOv5算法的钢材表面缺陷检测[J]. 图学学报, 2023, 44(2): 335-345.
CAO Y Q, WU M L, XU L. Steel surface defect detection based on improved YOLOv5 algorithm[J]. Journal of Graphics, 2023, 44(2): 335-345.
[15] 赵鑫, 陈里里, 杨维川, 等. DY-YOLOv5: 基于多重注意力机制的航拍图像目标检测[J]. 计算机工程与应用, 2024, 60(7): 183-191.
ZHAO X, CHEN L L, YANG W C, et al. DY-YOLOv5: target detection for aerial image based on multiple attention[J]. Computer Engineering and Applications, 2024, 60(7): 183-191.
[16] 粟兴旺, 王晓明, 黄金玻, 等. 基于可变形卷积与注意力机制的X光安检违禁品检测[J]. 电子测量技术, 2023, 46(10): 98-108.
SU X W, WANG X M, HUANG J B, et al. Prohibited items detection based on deformable convolution and attention mechanism in X-ray security inspection[J]. Electronic Measurement Technology, 2023, 46(10): 98-108.
[17] 庄集超, 郭保苏, 吴凤和. 基于可变形密集卷积神经网络的布匹瑕疵检测[J]. 计量学报, 2023, 44(2): 178-185.
ZHUANG J C, GUO B S, WU F H. Fabric defect detection based on deformable dense convolutional neural network[J]. Acta Metrologica Sinica, 2023, 44(2): 178-185.
[18] 蒋晨, 钱永明, 姚兴田, 等. 基于可变形卷积改进SSD算法的目标检测方法[J]. 电子测量技术, 2022, 45(16): 116-122.
JIANG C, QIAN Y M, YAO X T, et al. Target detection method based on deformable convolution improved SSD algorithm[J]. Electronic Measurement Technology, 2022, 45(16): 116-122.
[19] 于楠晶, 范晓飚, 邓天民, 等. 基于多头自注意力的复杂背景船舶检测算法[J]. 浙江大学学报 (工学版), 2022, 56(12): 2392-2402.
YU N J, FAN X B, DENG T M, et al. Ship detection algorithm in complex backgrounds via multi-head self-attention[J]. Journal of Zhejiang University (Engineering Science) , 2022, 56(12): 2392-2402.
[20] SONG K, YAN Y. A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects[J]. Applied Surface Science, 2013, 285: 858-864.
[21] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[22] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11534-11542.
[23] YANG Z, ZHU L, WU Y, et al. Gated channel transformation for visual recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 11794-11803.
[24] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[25] HUANG Z, WANG X, HUANG L, et al. CCNet: criss-cross attention for semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 603-612.
[26] LI X, WANG W, HU X, et al. Selective kernel networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 510-519.
[27] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[28] ZHANG Q L, YANG Y B. SA-Net: shuffle attention for deep convolutional neural networks[C]//Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021: 2235-2239.
[29] 李鑫, 汪诚, 李彬, 等. 改进YOLOv5的钢材表面缺陷检测算法[J]. 空军工程大学学报 (自然科学版), 2022, 23(2): 26-33.
LI X, WANG C, LI B, et al. Steel surface defect detection algorithm based on improved YOLOv5[J]. Journal of Air Force Engineering University (Natural Science Edition), 2022, 23(2): 26-33.
[30] 吕秀丽, 卢海滨, 侯春光, 等. 改进YOLOv5s的钢材表面缺陷检测算法[J]. 化工自动化及仪表, 2024, 51(2): 301-309.
LV X L, LU H B, HOU C G, et al. Improved YOLOv5 algorithm for steel surface defect detection[J]. Control and Instruments in Chemical Industry, 2024, 51(2): 301-309.
[31] 甄国涌, 赵林熔, 李文越, 等. 改进YOLOv5的钢材表面缺陷检测网络轻量化研究[J]. 组合机床与自动化加工技术, 2024(3): 58-63.
ZHEN G Y, ZHAO L R, LI W Y, et al. Research on lightweight of steel surface defect detection network based on improved YOLOv5[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2024(3): 58-63.
[32] 周彦, 孟江南, 王冬丽, 等. 基于多尺度轻量化注意力的钢材缺陷检测[J]. 控制与决策, 2024, 39(3): 901-909.
ZHOU Y, MENG J N, WANG D L, et al. Steel defect detection based on multi-scale lightweight attention[J]. Control and Decision, 2024, 39(3): 901-909. |