Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (21): 172-182.DOI: 10.3778/j.issn.1002-8331.2402-0147
• Graphics and Image Processing • Previous Articles Next Articles
XIAO Zhenjiu, YAN Su, QU Haicheng
Online:
2024-11-01
Published:
2024-10-25
肖振久,严肃,曲海成
XIAO Zhenjiu, YAN Su, QU Haicheng. Safety Helmet Detection Method in Complex Environment Based on Multi-Mechanism Optimization of YOLOv8[J]. Computer Engineering and Applications, 2024, 60(21): 172-182.
肖振久, 严肃, 曲海成. 基于多重机制优化YOLOv8的复杂环境下安全帽检测方法[J]. 计算机工程与应用, 2024, 60(21): 172-182.
[1] 牟亮, 赵红, 李燕, 等. 基于梯度压缩的YOLO v4算法车型识别[J]. 工程科学学报, 2022, 44(5): 940-950. MU L, ZHAO H, LI Y, et al. Vehicle recognition based on gradient compression and YOLO v4 algorithm[J]. Chinese Journal of Engineering, 2022, 44(5): 940-950. [2] 刘晓慧, 叶西宁. 肤色检测和Hu矩在安全帽识别中的应用[J]. 华东理工大学学报 (自然科学版), 2014, 40(3): 365-370. LIU X H, YE X N. Skin color detection and Hu moments in helmet recognition research[J]. Journal of East China University of Science and Technology (Natural Sicence Edition), 2014, 40(3): 365-370. [3] PARK M W, ELSAFTY N, ZHU Z. Hardhat-wearing detection for enhancing on-site safety of construction workers[J]. Journal of Construction Engineering and Management, 2015, 141(9): 04015024. [4] MNEYMNEH B E, ABBAS M, KHOURY H. Automated hardhat detection for construction safety applications[J]. Procedia Engineering, 2017, 196: 895-902. [5] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587. [6] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems, 2015. [7] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. [8] 徐守坤, 王雅如, 顾玉宛, 等. 基于改进Faster RCNN的安全帽佩戴检测研究[J]. 计算机应用研究, 2020, 37(3): 901-905. XU S K, WANG Y R, GU Y W, et al. Safety helmet wearing detection study based on improved faster RCNN[J]. Application Research of Computers, 2019, 37(3): 901-905. [9] 吴冬梅, 王慧, 李佳. 基于改进Faster RCNN的安全帽检测及身份识别[J]. 信息技术与信息化, 2020(1): 17-20. WU D M, WANG H, LI J. Safety helmet detection and identification based on improved faster RCNN[J]. Information Technology and Informatization, 2020 (1): 17-20. [10] 何湘杰, 宋晓宁. YOLOv4-Tiny的改进轻量级目标检测算法[J]. 计算机科学与探索, 2024, 18(1): 138-150. HE X J, SONG X N. Improved YOLOv4-Tiny lightweight target detection algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 138-150. [11] 王春梅, 刘欢. YOLOv8-VSC: 一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160. WANG C M, LIU H. YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160. [12] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788. [13] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271. [14] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018. [15] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv: 2004.10934, 2020. [16] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision (ECCV 2016), Amsterdam, The Netherlands, October 11-14, 2016.[S.l.]: Springer International Publishing, 2016: 21-37. [17] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988. [18] 施辉, 陈先桥, 杨英. 改进YOLO v3的安全帽佩戴检测方法[J]. 计算机工程与应用, 2019, 55(11): 213-220. SHI H, CHEN X Q, YANG Y. Safety helmet wearing detection method of improved YOLO v3[J]. Computer Engineering and Applications, 2019, 55(11): 213-220. [19] 杨永波, 李栋. 改进YOLOv5的轻量级安全帽佩戴检测算法[J]. 计算机工程与应用, 2022, 58(9): 201-207. YANG Y B, LI D. Lightweight helmet wearing detection algorithm of improved YOLOv5[J]. Computer Engineering and Applications, 2022, 58(9): 201-207. [20] MEHTA S, RASTEGARI M, CASPI A, et al. ESPNet: efficient spatial pyramid of dilated convolutions for semantic segmentation[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 552-568. [21] MEHTA S, RASTEGARI M, SHAPIRO L, et al. ESPNetv2: a light-weight, power efficient, and general purpose convolutional neural network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 9190-9200. [22] LI G, YUN I, KIM J, et al. DABNet: depth-wise asymmetric bottleneck for real-time semantic segmentation[J]. arXiv:1907.11357, 2019. [23] WU T, TANG S, ZHANG R, et al. CGNet: a light-weight context guided network for semantic segmentation[J]. IEEE Transactions on Image Processing, 2020, 30: 1169-1179. [24] DAI J, QI H, XIONG Y, et al. Deformable convolutional networks[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 764-773. [25] ZHANG X, LIU C, YANG D, et al. RFAConv: innovating spatital attention and standard convolutional operation[J]. arXiv:2304.03198, 2023. [26] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. [27] ZHANG H, HU W, WANG X. ParC-Net: position aware circular convolution with merits from convnets and transformer[C]//Proceedings of the European Conference on Computer Vision, 2022: 613-630. [28] TAN M, LE Q. EfficientNet: rethinking model scaling for convolutional neural networks[C]//Proceedings of the International Conference on Machine Learning, 2019: 6105-6114. [29] AZAD R, NIGGEMEIER L, HüTTEMANN M, et al. Beyond self-attention: deformable large kernel attention for medical image segmentation[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2024: 1287-1297. [30] OUYANG D, HE S, ZHANG G, et al. Efficient multi-scale attention module with cross-spatial learning[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2023), 2023: 1-5. [31] CHEN J, LI B, XUE X. Scene text telescope: text-focused scene image super- resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 12026-12035. [32] SUNKARA R, LUO T. No more strided convolutions or pooling: a new CNN building block for low-resolution images and small objects[C]//Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2022: 443-459. [33] ZHANG X, LIU C, YANG D, et al. RFAConv: innovating spatital attention and standard convolutional operation[J]. arXiv:2304.03198, 2023. [34] LI C, ZHOU A, YAO A. Omni-dimensional dynamic convolution[J]. arXiv:2209.07947, 2022. [35] DING X, ZHANG Y, GE Y, et al. UniRepLKNet: a universal perception large-kernel convnet for audio, video, point cloud, time-series and image recognition[J]. arXiv:2311.15599, 2023. [36] LI C, LI L, GENG Y, et al. YOLOv6 v3.0: a full-scale reloading[J]. arXiv:2301.05586, 2023. [37] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475. [38] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. arXiv:1412.7062, 2014. [39] 王坡, 罗红旗. 改进YOLOv5的安全帽佩戴检测算法[J]. 现代计算机, 2023, 29(24): 40-45. WANG P, LUO H Q. Improved helmet wearing detectionmethod of YOLOv5[J]. Modern Computer, 2023, 29(24): 40-45. [40] 韩锟栋, 张涛, 彭玻, 等. 基于改进YOLOv5的安全帽检测算法[J]. 现代电子技术, 2024, 47(5): 85-92. HAN K D, ZHANG T, PENG B, et al. Safety helmet detection algorithm based on improved YOLOv5[J]. Modern Electronics Technique, 2024, 47(5): 85-92. [41] 张欣毅, 张运楚, 王菲, 等. 改进YOLOv7的轧钢车间安全帽佩戴检测算法[J]. 计算机测量与控制, 2024(7): 15-22. ZHANG X Y, ZHANG Y C, WANG F, et al. Helmet wearing detection algorithm in steel rolling workshops based on improved YOLOv7[J]. Computer Measurement & Control, 2024(7): 15-22. [42] 丁玲, 缪小然, 胡建峰, 等. 改进YOLOv8s与DeepSORT的矿工帽带检测及人员跟踪[J]. 计算机工程与应用, 2024, 60(5): 328-335. DING L, MIAO X R, HU J F, et al. Improved miner chin strap detection and personnel tracking with YOLOv8s and DeepSORT[J]. Computer Engineering and Applications, 2024, 60(5): 328-335. |
[1] | DING Ling, MIAO Xiaoran, HU Jianfeng, ZHAO Zuopeng, ZHANG Xinjian. Improved Miner Chin Strap Detection and Personnel Tracking with YOLOv8s and DeepSORT [J]. Computer Engineering and Applications, 2024, 60(5): 328-335. |
[2] | DENG Zhenrong, XIONG Yuxu, YANG Rui, CHEN Yuren. Improved YOLOv5 Helmet Wearing Detection Algorithm for Small Targets [J]. Computer Engineering and Applications, 2024, 60(3): 78-87. |
[3] | GUAN Hanyu, LING Yun, WANG Shulei. Review of Deep Learning Algorithms for One-Stage Safety Helmet Detection [J]. Computer Engineering and Applications, 2024, 60(16): 61-75. |
[4] | HAN Guijin, WANG Ruixuan, XU Wuyan, LI Jun. Improved YOLOX Night Helmet Detection Algorithm [J]. Computer Engineering and Applications, 2024, 60(15): 180-188. |
[5] | XU Tiefeng, HUANG He, ZHANG Hongmin, NIU Xiaofu. Lightweight Road Damage Detection Method Based on Improved YOLOv8 [J]. Computer Engineering and Applications, 2024, 60(14): 175-186. |
[6] | LI Yonghui, YUAN Liang, HE Li, RAN Teng, LYU Kai. Research on Safety Helmet Wearing Detection Algorithm in Chemical Industry Park Scenarios [J]. Computer Engineering and Applications, 2024, 60(12): 111-117. |
[7] | GAO Teng, ZHANG Xianwu, LI Bai. Review on Application of Deep Learning in Helmet Wearing Detection [J]. Computer Engineering and Applications, 2023, 59(6): 13-29. |
[8] | LIU Yajie, Yilihamu·Yaermaimaiti, XI Lingfei, Yingtezhaer·Aishanjiang. Research on Improved Safety Helmet Wearing Detection Algorithm of YOLOv5s [J]. Computer Engineering and Applications, 2023, 59(20): 184-191. |
[9] | XU Chuanyun, YUAN Hanxiang, LI Gang, ZHENG Yu, LIU Huan. Research on Safety Helmet Wearing Detection Method Based on Scene Augment [J]. Computer Engineering and Applications, 2022, 58(19): 326-332. |
[10] | ZHAO Jianghe, WANG Hairui, WU Lei. FPN-Centernet Helmet Wearing Detection Algorithm [J]. Computer Engineering and Applications, 2022, 58(14): 114-120. |
[11] | SHI Hui, CHEN Xianqiao, YANG Ying. Safety Helmet Wearing Detection Method of Improved YOLO v3 [J]. Computer Engineering and Applications, 2019, 55(11): 213-220. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 149
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 127
|
|
|||||||||||||||||||||||||||||||||||||||||||||