XU Chuanyun, YUAN Hanxiang, LI Gang, ZHENG Yu, LIU Huan. Research on Safety Helmet Wearing Detection Method Based on Scene Augment[J]. Computer Engineering and Applications, 2022, 58(19): 326-332.
[1] 住房和城乡建设部办公厅关于2019年房屋市政工程生产安全事故情况的通报[EB/OL].(2020-06-19)[2021-02-20].http://www.mohurd.gov.cn/wjfb/202006/t20200624_246031.html.
Circular of the General Office of the Ministry of Housing and Urban Rural Development on production safety accidents of municipal housing projects in 2019.[EB/OL].(2020-06-19)[2021-02-20].http://www.mohurd.gov.cn/wjfb/202006/t20200624_246031.html.
[2] 言有三.深度学习中的数据增强方法都有哪些?[EB/OL].(2019-04-22)[2021-02-20].https://blog.csdn.net/weixin_43876801/article/details/102958247.
YAN Y S.What are the data enhancement methods in deep learning?[EB/OL].(2019-04-22)[2021-02-20].https://blog.csdn.net/weixin_43876801/article/details/102958247.
[3] DWIBEDI D,MISRA I,HEBERT M.Cut,paste and learn:Surprisingly easy synthesis for instance detection[C]//Proceedings of 2017 IEEE International Conference on Computer Vision(ICCV),2017.
[4] ZHANG H,CISSE M,DAUPHIN Y N,et al.Mixup:Beyond empirical risk minimization[J].arXiv:1710.09412,2017.
[5] INOUE H.Data augmentation by pairing samples for images classification[J].arXiv:1801.02929,2018.
[6] HUSSEIN A S,DIALLO B,LIU J.EBSMOTE:Evaluation-based synthetic minority oversampling Technique for imbalanced dataset learning[C]//Proceedings of IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering(ISKE),2019:1226-1233.
[7] 张家伟,郭林明,杨晓梅.针对不平衡数据的过采样和随机森林改进算法[J].计算机工程与应用,2020,56(11):39-45.
ZHANG J W,GUO L M,YANG X M.Improved oversampling and random forest algorithm for imbalanced data[J].Computer Engineering and Applications,2020,56(11):39-45.
[8] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:Optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020.
[9] 杜卉然,许亮,吕帅.基于邻域差分滤波生成式对抗网络的数据增强方法[J].计算机应用研究,2020,37(6):301-305.
DU H R,XU L,LYU S.Data enhancement method based on neighborhood differential filter generative countermeasure network[J].Application Research of Computers,2020,37(6):301-305.
[10] 孙晓,丁小龙.基于生成对抗网络的人脸表情数据增强方法[J].计算机工程与应用,2020,56(4):115-121.
SUN X,DING X L.Data augmentation method based on generative adversarial networks for facial expression recognition sets[J].Computer Engineering and Applications,2020,56(4):115-121.
[11] CUBUK E D,ZOPH B,MANé D,et al.AutoAugment:Learning augmentation strategies from data[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019:113-123.
[12] 方明,孙腾腾,邵桢.基于改进YOLOv2的快速安全帽佩戴情况检测[J].光学精密工程,2019(5):1196-1205.
FANG M,SUN T T,SHAO Z.Fast helmet wearing condition detection based on improved YOLOv2[J].Optics and Precision Engineering,2019(5):1196-1205.
[13] LIN T,MAIRE M,BELONGIE S,et al.Microsoft COCO:Common objects in context[C]//Proceedings of European Conference on Computer Vision,2014:740-755.
[14] LOSHCHILOV I,HUTTER F.SGDR:Stochastic gradient descent with restarts,2016[J].arXiv:1608.03983,2016.
[15] ZEILER M D.ADADELTA:An adaptive learning rate method[J].arXiv:1212.5701,2012.
[16] MO X,WEI T,ZHANG H,et al.Label-smooth learning for fine-grained visual categorization[C]//Proceedings of Asian Conference on Pattern Recognition,2019:17-31.
[17] ZHONG Z,ZHENG L,KANG G,et al.Random erasing data augmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2017.
[18] REDMON J,FARHADI A.YOLO9000:Better,faster,stronger[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2017:6517-6525.
[19] REDMON J,FARHADI A.YOLOv3:An incremental improvement[J].arXiv:1804.02767,2018.