[1] ZOU Z, CHEN K, SHI Z, et al. Object detection in 20 years: a survey[J]. Proceedings of the IEEE, 2023, 111(3): 257-276.
[2] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV),2015: 1440-1448.
[3] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[4] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the 14th European Conference on Computer Vision (ECCV 2016), 2016: 21-37.
[5] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), 2016: 779-788.
[6] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), 2017: 6517-6525.
[7] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[8] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[9] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[10] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023: 7464-7475.
[11] 董刚,谢维成,黄小龙,等. 深度学习小目标检测算法综述[J]. 计算机工程与应用, 2023, 59(11): 16-27.
DONG G, XIE W C, HUANG X L, et al. Review of small object detection algorithms based on deep learning[J]. Computer Engineering and Applications, 2023, 59(11): 16-27.
[12] ZHENG Q, ZHAO P, LI Y, et al. Spectrum interference-based two-level data augmentation method in deep learning for automatic modulation classification[J]. Neural Computing and Applications, 2021, 33(13): 7723-7745.
[13] ZHENG Q, TIAN X, YU Z, et al. Application of wavelet-packet transform driven deep learning method in PM2.5 concentration prediction: a case study of Qingdao, China[J]. Sustainable Cities and Society, 2023,92:104486.
[14] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), 2017: 2999-3007.
[15] LI J, LIANG X, WEI Y, et al. Perceptual generative adversarial networks for small object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017: 1951-1959.
[16] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[17] SINGH B, DAVIS L S. An analysis of scale invariance in object detection-SNIP[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 3578-3587.
[18] LI Y, CHEN Y, WANG N, et al. Scale-aware trident networks for object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019: 6053-6062.
[19] GUO C, FAN B, ZHANG Q, et al. AugFPN: improving multi-scale feature learning for object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020: 12592-12601.
[20] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 2021: 2778-2788.
[21] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[J]. arXiv:1807.06521, 2018.
[22] LIU R, LEHMAN J, MOLINO P, et al. An intriguing failing of convolutional neural networks and the CoordConv solution[J]. arXiv:1807.03247, 2018.
[23] 张艳, 张明路, 吕晓玲, 等. 深度学习小目标检测算法研究综述[J]. 计算机工程与应用, 2022, 58(15): 1-17.
ZHANG Y, ZHANG M L, LYU X L, et al. Review of research on small target detection based on deep learning[J]. Computer Engineering and Applications, 2022, 58(15): 1-17.
[24] HU J, SHEN L, ALBANIE S, et al. Gather-excite: exploiting feature context in convolutional neural networks[J]. arXiv:1810.12348, 2018.
[25] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence,2020.
[26] TONG Z, CHEN Y, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arXiv:2301.10051, 2023.
[27] ZENG S, YANG W, JIAO Y, et al. SCA-YOLO: a new small object detection model for UAV images[J]. Visual Computer, 2023, 40: 1787-1803.
[28] 于傲泽, 魏维伟, 王平, 等. 基于分块复合注意力的无人机小目标检测算法[J]. 航空学报, 2024(14): 42-52.
YU A Z, WEI W W, WANG P, et al. Small target detection algorithm for UAV based on patch-wise co-attention[J].Acta Aeronautica et Astronautica Sinica, 2024(14): 42-52.
[29] LOU H, DUAN X, GUO J, et al. DC-YOLOv8: small-size object detection algorithm based on camera sensor[J]. Electronics, 2023, 12(10): 2323.
[30] LIANG S, WU H, ZHEN L, et al. Edge YOLO: real-time intelligent object detection system based on edge-cloud cooperation in autonomous vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 25345-25360. |