Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (12): 61-73.DOI: 10.3778/j.issn.1002-8331.2311-0029
• Research Hotspots and Reviews • Previous Articles Next Articles
ZHANG Wenhao, XU Zhenshun, LIU Na, WANG Zhenbiao, TANG Zengjin, WANG Zheng’an
Online:
2024-06-15
Published:
2024-06-14
张文豪,徐贞顺,刘纳,王振彪,唐增金,王正安
ZHANG Wenhao, XU Zhenshun, LIU Na, WANG Zhenbiao, TANG Zengjin, WANG Zheng’an. Overview of Knowledge Graph Completion Methods[J]. Computer Engineering and Applications, 2024, 60(12): 61-73.
张文豪, 徐贞顺, 刘纳, 王振彪, 唐增金, 王正安. 知识图谱补全方法研究综述[J]. 计算机工程与应用, 2024, 60(12): 61-73.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2311-0029
[1] MAHDISOLTANI F, BIEGA J, SUCHANEK F. YAGO3: a knowledge base from multilingual wikipedias[C]//Proceedings of the 7th Biennial Conference on Innovative Data Systems Research, 2015. [2] XU L, CHEN T, HOU Z, et al. Knowledge graph-based reinforcement federated learning for Chinese question and answering[J]. IEEE Transactions on Computational Social Systems, 2024, 11(1): 1035-1045. [3] TANG C M, ZHAO Y G, YU X. Intelligent stock recommendation system based on generalized financial knowledge graph[C]//Proceedings of the 3rd International Conference on Intelligent Computing and Human-Computer Interaction, 2023: 332-338. [4] XIAO Y, YANG G, ZHANG X. A new learning resource retrieval method based on multi-knowledge association mining[J]. International Journal of Emerging Technologies in Learning, 2023, 18(4): 104-119. [5] AUER S, BIZER C, KOBILAROV G, et al. DBPedia: a nucleus for a Web of open data[C]//Proceedings of the 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, Busan, Korea, November 11-15, 2007: 722-735. [6] BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, 2008: 1247-1250. [7] CHRISTIANE F. WordNet: an electronic lexical database[J]. Computational Linguistics, 1998, 5: 292-296. [8] VRANDE?I? D, KR?TZSCH M. Wikidata: a free collaborative knowledgebase[J]. Communications of the ACM, 2014, 57(10): 78-85. [9] SHEN T, ZHANG F, CHENG J. A comprehensive overview of knowledge graph completion[J]. Knowledge-Based Systems, 2022, 255: 109597. [10] CHEN Z, WANG Y, ZHAO B, et al. Knowledge graph completion: a review[J]. IEEE Access, 2020, 8: 192435-192456. [11] ZAMINI M, REZA H, RABIEI M. A review of knowledge graph completion[J]. Information, 2022, 13(8): 396. [12] 吴国栋, 刘涵伟, 何章伟, 等. 知识图谱补全技术研究综述[J]. 小型微型计算机系统, 2023, 44(3): 471-482. WU G D, LIU H W, HE Z W, et al. Review of knowledge graph completion technology[J]. Journal of Chinese Computer Systems, 2023, 44(3): 471-482. [13] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv:1301.3781, 2013. [14] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Advances in Neural Information Processing Systems, 2013. [15] WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the National Conference on Artificial Intelligence, 2014: 1112-1119. [16] LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2015: 2181-2187. [17] SUN Z, DENG Z H, NIE J Y, et al. RotatE: knowledge graph embedding by relational rotation in complex space[J]. arXiv:1902.10197, 2019. [18] ZHANG Z, CAI J, ZHANG Y, et al. Learning hierarchy-aware knowledge graph embeddings for link prediction[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 3065-3072. [19] ZHANG J, YU H. Hierarchy-aware temporal knowledge graph embedding[C]//Proceedings of the 2022 IEEE International Conference on Knowledge Graph (ICKG), 2022: 373-380. [20] LI J, SU X. TransERR: translation-based knowledge graph completion via efficient relation rotation[J]. arXiv:2306.14580, 2023. [21] WANG Z, LI L, LI Q, et al. Multimodal data enhanced representation learning for knowledge graphs[C]//Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), 2019: 1-8. [22] NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of the International Conference on Machine Learning, 2011 : 809-816. [23] BALA?EVI? I, ALLEN C, HOSPEDALES T M. TuckER: tensor factorization for knowledge graph completion[J]. arXiv:1901.09590, 2019. [24] TUCKER L R. Some mathematical notes on three-mode factor analysis[J]. Psychometrika, 1966, 31(3): 279-311. [25] YANG B, YIH W, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases[J]. arXiv:1412.6575, 2014. [26] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the International Conference on Machine Learning, 2016: 2071-2080. [27] KAZEMI S M, POOLE D. Simple embedding for link prediction in knowledge graphs[C]//Advances in Neural Information Processing Systems, 2018: 4289-4300. [28] ZHANG Z, CAI J, WANG J. Duality-induced regularizer for tensor factorization based knowledge graph completion[C]//Advances in Neural Information Processing Systems, 2020: 21604-21615. [29] YU M, GUO J, YU J, et al. BDRI: block decomposition based on relational interaction for knowledge graph completion[J]. Data Mining and Knowledge Discovery, 2023, 37(2): 767-787. [30] 陈跃鹤, 谈川源, 陈文亮, 等. 结合多重嵌入表示的中文知识图谱补全[J]. 中文信息学报, 2023, 37(1): 54-63. CHEN Y H, TAN C Y, CHEN W L, et al. Chinese knowledge graph complementation with multiple embeddings[J]. Journal of Chinese Information Processing, 2023,37 (1): 54-63. [31] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018: 1811-1818. [32] VASHISHTH S, SANYAL S, NITIN V, et al. Interacte: improving convolution-based knowledge graph embeddings by increasing feature interactions[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 3009-3016. [33] 周新, 郭敬楠, 宁博, 等. IntSE: 特征增强的知识图谱补全方法[J]. 小型微型计算机系统, 2023, 44(9): 1961-1965. ZHOU X, GUO J N, NING B, et al. IntSE: feature enhanced knowledge graph completion method[J]. Journal of Chinese Computer Systems, 2023, 44(9): 1961-1965. [34] YANG X, WANG N. A confidence-aware and path-enhanced convolutional neural network embedding framework on noisy knowledge graph[J]. Neurocomputing, 2023, 545: 126261. [35] 邹长龙, 安敬民, 李冠宇. 基于邻域聚合与CNN的知识图谱实体类型补全[J]. 计算机工程, 2023, 49(3): 134-141. ZOU C L, AN J M, LI G Y. Knowledge graph entity type completion based on neighborhood aggregation and CNN[J]. Computer Engineering, 2023, 49(3): 134-141. [36] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the 15th Extended Semantic Web Conference(ESWC?2018), Heraklion, Greece, June 3-7, 2018: 593-607. [37] YE R, LI X, FANG Y, et al. A vectorized relational graph convolutional network for multi-relational network alignment[C]//Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 2019: 4135-4141. [38] VASHISHTH S, SANYAL S, NITIN V, et al. Composition-based multi-relational graph convolutional networks[J]. arXiv:1911.03082, 2019. [39] ZEB A, SAIF S, CHEN J, et al. Complex graph convolutional network for link prediction in knowledge graphs[J]. Expert Systems with Applications, 2022, 200: 116796. [40] 张贞港, 余传明. 基于实体与关系融合的知识图谱补全模型研究[J]. 数据分析与知识发现, 2023, 7(2): 15-25. ZHANG Z G, YU C M. Knowledge graph completion model based on entity and relation fusion[J]. Data Analysis and Knowledge Discovery, 2023, 7(2): 15-25. [41] ZHANG X, ZHANG C, GUO J, et al. Graph attention network with dynamic representation of relations for knowledge graph completion[J]. Expert Systems with Applications, 2023, 219: 119616. [42] ZHAI H, LV X, HOU Z, et al. MLSFF: multi-level structural features fusion for multi-modal knowledge graph completion[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 14096-14116. [43] VU T, NGUYEN T D, NGUYEN D Q, et al. A capsule network-based embedding model for knowledge graph completion and search personalization[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1:Long and Short Papers), 2019: 2180-2189. [44] CHENG J, YANG Z, DANG J, et al. Representation learning of knowledge graphs with multi-scale capsule network[C]//Proceedings of the 20th International Conference on Intelligent Data Engineering and Automated Learning, Manchester, UK, November 14-16, 2019: 282-290. [45] CHENG J, ZHANG F, YANG Z. Knowledge graph representation learning with multi-scale capsule-based embedding model incorporating entity descriptions[J]. IEEE Access, 2020, 8: 203028-203038. [46] LI J, HOU J, ZHOU C. An improved capsule network-based embedding model for knowledge graph completion[C]//Proceedings of the 33rd Chinese Control and Decision Conference (CCDC), 2021: 2247-2251. [47] MA H, JIANG X, WEI X, et al. A Multi-scale disperse dynamic routing capsule network knowledge graph embedding model based on relational memory[C]//Proceedings of the 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2022: 2540-2545. [48] XIONG W, YU M, CHANG S, et al. One-shot relational learning for knowledge graphs[J]. arXiv:1808.09040, 2018. [49] ZHANG C, YAO H, HUANG C, et al. Few-shot knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 3041-3048. [50] YUAN X, XU C, LI P, et al. Relational learning with hierarchical attention encoder and recoding validator for few-shot knowledge graph completion[C]//Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, 2022: 786-794. [51] LI Y, YU K, ZHANG Y, et al. Learning relation-specific representations for few-shot knowledge graph completion[J]. arXiv:2203.11639, 2022. [52] LI Z, GENG P, CAO S, et al. Few-shot knowledge graph completion based on data enhancement[C]//Proceedings of the 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2022: 1607-1611. [53] SHENG J, GUO S, CHEN Z, et al. Adaptive attentional network for few-shot knowledge graph completion[J]. arXiv:2010.09638, 2020. [54] LI Q, YAO J, TANG X, et al. Capsule neural tensor networks with multi-aspect information for few-shot knowledge graph completion[J]. Neural Networks, 2023, 164: 323-334. [55] ZHANG X, LIANG X, ZHENG X, et al. MULTIFORM: few-shot knowledge graph completion via multi-modal contexts[C]//Proceedings of theJoint European Conference on Machine Learning and Knowledge Discovery in Databases, 2022: 172-187. [56] QIN P, WANG X, CHEN W, et al. Generative adversarial zero-shot relational learning for knowledge graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 8673-8680. [57] GENG Y, CHEN J, CHEN Z, et al. OntoZSL: ontology-enhanced zero-shot learning[C]//Proceedings of the Web Conference (WWW’21), 2021: 3325-3336. [58] WANG Z, CHEN C, TANG K. Zero-shot knowledge graph completion for recommendation system[C]//Proceedings of the 23rd International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2022), Manchester, UK, November 24-26, 2022: 188-198. [59] DU Z. Zero or few shot knowledge graph completions by text enhancement with multi-grained attention[C]//Proceedings of the IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), 2021: 1050-1058. [60] LI X, MA J, YU J, et al. A structure-enhanced generative adversarial network for knowledge graph zero-shot relational learning[J]. Information Sciences, 2023, 629: 169-183. [61] CAI Y, LI Y, FANG Z, et al. Entity completion for industrial knowledge graph based on zero-shot learning[J]. Available at SSRN 4450233. [62] YAO L, PENG J, MAO C, et al. Exploring large language models for knowledge graph completion[J]. arXiv:2308. 13916, 2023. [63] ZHANG Y, CHEN Z, ZHANG W, et al. Making large language models perform better in knowledge graph completion[J]. arXiv:2310.06671, 2023. [64] ZHAO W X, ZHOU K, LI J, et al. A survey of large language models[J]. arXiv:2303.18223, 2023. [65] XIE X, LI Z, WANG X, et al. Lambdakg: a library for pre-trained language model-based knowledge graph embeddings[J]. arXiv:2210.00305, 2022. |
[1] | LIAN Lu, TIAN Qichuan, TAN Run, ZHANG Xiaohang. Research Progress of Image Style Transfer Based on Neural Network [J]. Computer Engineering and Applications, 2024, 60(9): 30-47. |
[2] | ZHANG Junsan, XIAO Sen, GAO Hui, SHAO Mingwen, ZHANG Peiying, ZHU Jie. Multi-Task Graph Recommendation Algorithm Based on Neighborhood Sampling [J]. Computer Engineering and Applications, 2024, 60(9): 172-180. |
[3] | XU Zhihong, ZHANG Tianrun, WANG Liqin, DONG Yongfeng. Temporal Knowledge Graph Reasoning with Graph Reconstruction [J]. Computer Engineering and Applications, 2024, 60(9): 181-187. |
[4] | SONG Jianping, WANG Yi, SUN Kaiwei, LIU Qilie. Short Text Classification Combined with Hyperbolic Graph Attention Networks and Labels [J]. Computer Engineering and Applications, 2024, 60(9): 188-195. |
[5] | YANG Wentao, LEI Yuqi, LI Xingyue, ZHENG Tiancheng. Chinese Long Text Classification Model Based on BERT Fused Chinese Input Methods and BLCG [J]. Computer Engineering and Applications, 2024, 60(9): 196-202. |
[6] | TAO Linjuan, HUA Gengxing, LI Bo. Aspect-Level Sentiment Analysis Based on Location-Enhanced Word Embeddings and GRU-CNN Model [J]. Computer Engineering and Applications, 2024, 60(9): 212-218. |
[7] | DENG Xiquan, CHEN Gang. ConvUCaps: Medical Image Segmentation Model Based on Convolutional Capsule Network [J]. Computer Engineering and Applications, 2024, 60(8): 258-266. |
[8] | WANG Yonggui, WANG Xinru. Multi-View Group Recommendation Integrating Self-Attention and Graph Convolution [J]. Computer Engineering and Applications, 2024, 60(8): 287-295. |
[9] | QIAN Ping, HAN Rui, XIE Lingdong, LUO Wang, XU Huarong, LI Songsong, ZHENG Zhendong. Hardware Accelerator Supporting Inhibitory Spiking Neural Network [J]. Computer Engineering and Applications, 2024, 60(8): 338-347. |
[10] | ZHOU Bojun, CHEN Zhiyu. Survey of Few-Shot Image Classification Based on Deep Meta-Learning [J]. Computer Engineering and Applications, 2024, 60(8): 1-15. |
[11] | SUN Shilei, LI Ming, LIU Jing, MA Jingang, CHEN Tianzhen. Research Progress on Deep Learning in Field of Diabetic Retinopathy Classification [J]. Computer Engineering and Applications, 2024, 60(8): 16-30. |
[12] | WANG Weitai, WANG Xiaoqiang, LI Leixiao, TAO Yihao, LIN Hao. Review of Construction and Applications of Spatio-Temporal Graph Neural Network in Traffic Flow Prediction [J]. Computer Engineering and Applications, 2024, 60(8): 31-45. |
[13] | XIE Weiyu, ZHANG Qiang. Review on Detection of Drones and Birds in Photoelectric Images Based on Deep Learning Convolutional Neural Network [J]. Computer Engineering and Applications, 2024, 60(8): 46-55. |
[14] | ZHAO Bo, WANG Yujia, NI Ji. E-TUP:Joint Knowledge Graph Learning Recommendation Method Incorporating E-CP and TUP [J]. Computer Engineering and Applications, 2024, 60(8): 99-109. |
[15] | SONG Shilin, ZHANG Xuejun. Algorithm Research Based on Multi-Feature Fusion of EEG Signals with Convolutional Neural Networks [J]. Computer Engineering and Applications, 2024, 60(8): 148-155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||