[1] 官赛萍, 靳小龙, 贾岩涛, 等. 面向知识图谱的知识推理研究进展[J]. 软件学报, 2018, 29(10): 2966-2994.
GUAN S P, JIN X L, JIA Y T, et al. Knowledge reasoning over knowledge graph: a survey[J]. Journal of Software, 2018, 29(10): 2966-2994.
[2] 李凤英, 范伟豪. 基于时序感知的动态知识图谱补全方法[J]. 计算机工程与应用, 2022, 58(15): 202-209.
LI F Y, FAN W H. Temporal aware approach for dynamic knowledge graph completion[J]. Computer Engineering and Applications, 2022, 58(15): 202-209.
[3] 徐有为, 张宏军, 程恺, 等. 知识图谱嵌入研究综述[J]. 计算机工程与应用, 2022, 58(9): 30-50.
XU Y W, ZHANG H J, CHENG K, et al. Comprehensive survey on knowledge graph embedding[J]. Computer Engineering and Applications, 2022, 58(9): 30-50.
[4] 申宇铭, 杜剑峰. 时态知识图谱补全的方法及其进展[J]. 大数据, 2021, 7(3): 30-41.
SHEN Y M, DU J F. Temporal knowledge graph completion: methods and progress[J]. Big Data Research, 2021, 7(3): 30-41.
[5] JI S, PAN S, CAMBRIA E, et al. A survey on knowledge graphs: representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(2): 494-514.
[6] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]// Proceedings of the 26th International Conference on Neural Information Processing Systems, 2013: 2787-2795.
[7] WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the AAAI Conference on Artificial Intelligence, Quebec City, 2014: 1112-1119.
[8] 杨东华, 何涛, 王宏志, 等. 面向知识图谱的图嵌入学习研究进展[J]. 软件学报, 2022, 33(9): 3370-3390.
YANG D H, HE T, WANG H Z, et al. Survey on knowledge graph embedding learning[J]. Journal of Software, 2022, 33(9): 3370-3390.
[9] YANG B, YIH W, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases[C]//Proceeding of the 3rd International Conference on Learning Representations, 2015: 1-12.
[10] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the 33rd International Conference on Machine Learning, New York, 2016: 2071-2080.
[11] KAZEMI S M, POOLE D. Simple embedding for link prediction in knowledge graphs[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018: 4289-4300.
[12] CHEN X J, JIA S B, XIANG Y. A review: knowledge reasoning over knowledge graph[J]. Expert Systems with Applications, 2020, 141: 112948.
[13] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the Semantic Web-15th International Conference, Heraklion, Crete, Greece, 2018: 593-607.
[14] DASGUPTA S S, RAY S N, TALUKDAR P. Hyte: hyperplane-based temporally aware knowledge graph embedding[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, 2018: 2001-2011.
[15] GOEL R, KAZEMI S M, BRUBAKER M, et al. Diachronic embedding for temporal knowledge graph completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 3988-3995.
[16] GARCíA-DURáN A, DUMAN?I? S, NIEPERT M. Learning sequence encoders for temporal knowledge graph completion[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, October 31-November 4, 2018. [S.l.]: Association for Computational Linguistics, 2018: 4816-4821.
[17] ZHU C, CHEN M, FAN C, et al. Learning from history: modeling temporal knowledge graphs with sequential copy-generation networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 4732-4740.
[18] JIN W, QU M, JIN X, et al. Recurrent event network: autoregressive structure inference over temporal knowledge graphs[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, Punta Cana, 2020: 6669-6683.
[19] SANKAR A, WU Y, GOU L, et al. Dysat: deep neural representation learning on dynamic graphs via self-attention networks[C]//Proceedings of the 13th International Conference on Web Search and Data Mining, 2020: 519-527.
[20] PAREJA A, DOMENICONI G, CHEN J, et al. EvolveGCN: evolving graph convolutional networks for dynamic graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence, New York, 2020: 5363-5370.
[21] HAN Z, CHEN P, MA Y, et al. Explainable subgraph reasoning for forecasting on temporal knowledge graphs[C]//Proceedings of International Conference on Learning Representations, 2021.
[22] HAMILTON W, YING Z, LESKOVEC J. Inductive representation learning on large graphs[J]. Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 1024-1034.
[23] MAHDISOLTANI F, BIEGA J, SUCHANEK F. Yago3: a knowledge base from multilingual wikipedias[C]//7th Biennial Conference on Innovative Data Systems Research, Asilomar, California, 2015: 1-11. |