[1] HUANG J T, SHARMA A, SUN S, et al. Embedding-based retrieval in facebook search[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020: 2553-2561.
[2] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8): 30-37.
[3] MA H, YANG H, LYU M R, et al. Sorec: social recommendation using probabilistic matrix factorization[C]//Proceedings of the 17th ACM Conference on Information and Knowledge Management, 2008: 931-940.
[4] HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web, 2017: 173-182.
[5] BERG R, KIPF T N, WELLING M. Graph convolutional matrix completion[J]. arXiv:1706.02263, 2017.
[6] WANG X, HE X, WANG M, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2019: 165-174.
[7] HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020: 639-648.
[8] CASELLES-DUPRé H, LESAINT F, ROYO-LETELIER J. Word2vec applied to recommendation: hyperparameters matter[C]//Proceedings of the 12th ACM Conference on Recommender Systems, 2018: 352-356.
[9] CAI T T, FRANKLE J, SCHWAB D J, et al. Are all negatives created equal in contrastive instance discrimination?[J]. arXiv:2010.06682, 2020.
[10] WU Z, PAN S, CHEN F, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(1): 4-24.
[11] PAN L M, XIE Y X, FENG Y S, et al. Semantic graphs for generating deep questions[J]. arXiv:2004.12704, 2020.
[12] GAO C, ZHENG Y, LI N, et al. A survey of graph neural networks for recommender systems: challenges, methods, and directions[J]. ACM Transactions on Recommender Systems, 2023, 1(1): 1-51.
[13] 刘鑫, 梅红岩, 王嘉豪, 等. 图神经网络推荐方法研究[J]. 计算机工程与应用, 2022, 58(10): 41-49.
LIU X, MEI H Y, WANG J H, et al. Research on graph neural network recommendation method[J]. Computer Engineering and Applications, 2022, 58(10): 41-49.
[14] MAO K, ZHU J, XIAO X, et al. UltraGCN: ultra simplification of graph convolutional networks for recommendation[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021: 1253-1262.
[15] LIU F, CHENG Z, ZHU L, et al. Interest-aware message-passing GCN for recommendation[C]//Proceedings of the Web Conference, 2021: 1296-1305.
[16] HUANG C, XU H, XU Y, et al. Knowledge-aware coupled graph neural network for social recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 4115-4122.
[17] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[J]. arXiv:1205.2618, 2012.
[18] MAO K, ZHU J, WANG J, et al. SimpleX: a simple and strong baseline for collaborative filtering[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021: 1243-1252.
[19] YANG Z, DING M, ZOU X, et al. Region or global a principle for negative sampling in graph-based recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(6): 6264-6277.
[20] DING J, QUAN Y, YAO Q, et al. Simplify and robustify negative sampling for implicit collaborative filtering[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020: 1094-1105.
[21] HUANG T, DONG Y, DING M, et al. MixGCF: an improved training method for graph neural network-based recommender systems[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021: 665-674.
[22] LINDEN G, SMITH B, YORK J. Amazon. com recommendations: item-to-item collaborative filtering[J]. IEEE Internet Computing, 2003, 7(1): 76-80.
[23] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016.
[24] XU K, LI C, TIAN Y, et al. Representation learning on graphs with jumping knowledge networks[C]//International Conference on Machine Learning, 2018: 5453-5462.
[25] ANAGNOSTOPOULOS A, KUMAR R, MAHDIAN M. Influence and correlation in social networks[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2008: 7-15.
[26] SHARMA K, LEE Y C, NAMBI S, et al. A survey of graph neural networks for social recommender systems[J]. arXiv:2212.04481, 2022.
[27] HE R, MCAULEY J. Ups and downs: modeling the visual evolution of fashion trends with one-class collaborative filtering[C]//Proceedings of the 25th International Conference on World Wide Web, 2016: 507-517.
[28] HE R, MCAULEY J. VBPR: visual Bayesian personalized ranking from implicit feedback[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2016.
[29] WANG X, JIN H, ZHANG A, et al. Disentangled graph collaborative filtering[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020: 1001-1010.
[30] BUDHIRAJA A. Revisiting SVD to generate powerful node embeddings for recommendation systems[J]. arXiv:2110.
03665, 2021.
[31] FAN W, LIU X, JIN W, et al. Graph trend filtering networks for recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022: 112-121.
[32] KINGMA D P, BA J. Adam: a method for stochastic optimization[J]. arXiv:1412.6980, 2014. |