[1] 袁立宁, 李欣, 王晓冬, 等.图嵌入模型综述[J].计算机科学与探索, 2022, 16(1): 59-87.
YUAN L N, LI X, WANG X D, et al. Graph embedding models: a survey[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 59-87.
[2] 郑裕龙, 陈启买, 贺超波, 等.图卷积网络增强的非负矩阵分解社区发现方法[J].计算机工程与应用, 2022, 58(11): 73-83.
ZHENG Y L, CHEN Q M, HE C B, et al. Nonnegative matrix factorization community detection method enhanced by graph convolutional network[J]. Computer Engineering and Applications, 2022, 58(11): 73-83.
[3] ZHAO J, WEN T, JAHANSHAHI H, et al. The random walk-based gravity model to identify influential nodes in complex networks[J]. Information Sciences, 2022, 609: 1706-1720.
[4] 马帅, 刘建伟, 左信.图神经网络综述[J].计算机研究与发展, 2022, 59(1): 47-80.
MA S, LIU J W, ZUO X. Survey on graph neural network[J]. Journal of Computer Research and Development, 2022, 59(1): 47-80.
[5] 来杰, 王晓丹, 向前, 等.自编码器及其应用综述[J].通信学报, 2021, 42(9): 218-230.
LAI J, WANG X D, XIANG Q, et al. Review on autoencoder and its application[J]. Journal on Communications, 2021, 42(9): 218-230.
[6] KIPF T N, WELLING M. Variational graph auto-encoders[J]. arXiv:1611.07308v1, 2016.
[7] 翟正利, 梁振明, 周炜, 等.变分自编码器模型综述[J].计算机工程与应用, 2019, 55(3): 1-9.
ZHAI Z L, LIANG Z M, ZHOU W, et al. Research overview of variational auto-encoders models[J]. Computer Engineering and Applications, 2019, 55(3): 1-9.
[8] 徐冰冰, 岑科廷, 黄俊杰, 等.图卷积神经网络综述[J].计算机学报, 2020, 43(5): 755-780.
XU B B, CEN K T, HUANG J J, et al. A survey on graph convolutional neural network[J]. Chinese Journal of Computers, 2020, 43(5): 755-780.
[9] SALHA G, HENNEQUIN R, VAZIRGIANNIS M. Simple and effective graph autoencoders with one-hop linear models[C]//Proceedings of the 2020 Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer, 2020: 319-334.
[10] AHN S J, KIM M. Variational graph normalized autoencoders[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 2827-2831.
[11] GUO L, DAI Q. Graph clustering via variational graph embedding[J]. Pattern Recognition, 2022, 122: 1-12.
[12] LEE N, LEE J, PARK C. Augmentation-free self-supervised learning on graphs[C]//Proceedings of the 2022 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2022: 7372-7380.
[13] 袁立宁, 刘钊.基于One-Shot聚合自编码器的图表示学习[J].计算机应用, 2023, 43(1): 8-14.
YUAN L N, LIU Z. Graph representation learning by autoencoder with one-shot aggregation[J]. Journal of Computer Applications, 2023, 43(1): 8-14.
[14] LI D, LI D, LIAN G. Variational graph autoencoder with mutual information maximization for graph representations learning[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2022, 36(9): 1-18.
[15] WANG D, CUI P, ZHU W. Structural deep network embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1225-1234.
[16] TANG J, QU M, WANG M, et al. LINE: large-scale information network embedding[C]//Proceedings of the 24th International Conference on World Wide Web. New York: ACM, 2015: 1067-1077.
[17] FIRTH J R. A synopsis of linguistic theory, 1930—1955[M]//Studies in linguistic analysis. Oxford: Philological Society, 1957: 1-32.
[18] ZACHARY W W. An information flow model for conflict and fission in small groups[J]. Journal of Anthropological Research, 1977, 33(4): 452-473.
[19] KLEINBERG J M. Authoritative sources in a hyperlinked environment[J]. Journal of the ACM, 1999, 46(5): 604-632.
[20] CAO S, LU W, XU Q. GraRep: learning graph representations with global structural information[C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management. New York: ACM, 2015: 891-900.
[21] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: ACM, 2016: 3844-3852.
[22] GUO Z, WANG F, YAO K, et al. Multi-scale variational graph autoencoder for link prediction[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York: ACM, 2022: 334-342.
[23] 康世泽, 吉立新, 张建朋.一种基于图注意力网络的异质信息网络表示学习框架[J].电子与信息学报, 2021, 43(4): 915-922.
KANG S Z, JI L X, ZHANG J P. Heterogeneous information network representation learning framework based on graph attention network[J]. Journal of Electronics & Information Technology, 2021, 43(4): 915-922.
[24] HY T S, KONDOR R. Multiresolution equivariant graph variational autoencoder[J]. Machine Learning: Science and Technology, 2023, 4(1): 1-24.
[25] GOYAL P, FERRARA E. Graph embedding techniques, applications, and performance: a survey[J]. Knowledge Based Systems, 2018, 151: 78-94.
[26] WANG C, PAN S, HU R, et al. Attributed graph clustering: a deep attentional embedding approach[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. New York: ACM, 2019: 3670-3676. |