[1] ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749.
[2] 赵琳琳, 吴安彪, 袁野, 等. 位置社交网络上的图表示学习[J]. 计算机学报, 2022, 45(4): 838-857.
ZHAO L L, WU A B, YUAN Y, et al. G-raph representation learning on location-based social networks[J]. Chinese Journal of Computers, 2022, 45(4): 838-857.
[3] SUN Y, YUAN N J, XIE X, et al. Collaborative intent prediction with real-time contextual data[J]. ACM Transactions on Information Systems, 2017, 35(4): 1-33.
[4] JI S, PAN S, CAMBRIA E, et al. A survey on knowledge graphs: representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 33: 494-514.
[5] GUO Q, ZHUANG F, QIN C, et al. A Survey on knowledge graph-based recommender systems[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(8): 3549-3568.
[6] HOGAN A, BLOMQVIST E, COCHEZ M, et al. Knowledge graphs[J]. ACM Computing Surveys, 2021, 54(4): 1-37.
[7] WANG H, ZHANG F, XIE X, et al. DKN: deep knowledge-aware network for news recommendation[C]//Proceedings of the 2018 World Wide Web Conference, Lyon, 2018: 1835-1844.
[8] JI G, HE S, XU L, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, Beijing, 2015: 687-696.
[9] CAO Y, XIANG W, HE X, et al. Unifying knowledge graph learning and recommendation: towards a better understanding of user preferences[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, 2019: 151-161.
[10] HUANG X, FANG Q, QIAN S, et al. Explainable interaction-driven user modeling over knowledge graph for sequential recommendation[C]//Proceedings of the 27th ACM International Conference on Multimedia, Nice, 2019: 548-556.
[11] MA W, ZHANG M, CAO Y, et al. Jointly learning explainable rules for recommendation with knowledge graph[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, 2019: 1210-1221.
[12] WANG X, HE X, CAO Y, et al. KGAT: knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, 2019: 950-958.
[13] WANG H, ZHANG F, WANG J, et al. Ripple-Net: propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, 2018: 417-426.
[14] WANG H, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, 2019: 3307-3313.
[15] WU Z, PAN S, CHEN F, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(1): 4-24.
[16] GAO C, WANG X, HE X, et al. Graph neural networks for recommender system[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining, 2022: 1623-1625.
[17] ZHU J, ROSSI RA, RAO A, et al. Graph neural networks with heterophily[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, Canada, 2021: 11168-11176.
[18] YING R, HE R, CHEN K, et al. Graph convolutional neural networks for web?scale recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, 2018: 974-983.
[19] ZHANG J, GAO C, JIN D, et al. Group-buying recommendation for social ecommerce[C]//Proceedings of the 2021 IEEE 37th International Conference on Data Engineering, Chania, 2021: 1536-1547.
[20] LIU Y, YANG S, XU Y, et al. Contextualized graph attention network for recommendation with item knowledge graph[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35(1): 181-195.
[21] WANG Z, WANG Z, LI X, et al. Exploring multi-dimension user?item interactions with attentional knowledge graph neural networks for recommendation[J]. IEEE Transactions on Big Data, 2022, 9(1): 212-226.
[22] WANG X, JIN H, ZHANG A, et al. Disentangled graph collaborative filtering[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2020: 1001-1010.
[23] WANG X, HUANG T, WANG D, et al. Learning intents behind interactions with knowledge graph for recommendation[C]//Proceedings of the Web Conference 2021, Ljubljana, 2021: 878-887.
[24] 陈碧毅, 黄玲, 王昌栋, 等. 融合显式反馈与隐式反馈的协同过滤推荐算法[J]. 软件学报, 2020, 31(3): 794-805.
CHEN B Y, HUANG L, WANG C D, et al. Explicit and implicit feedback based collaborative filtering algorithm[J]. Journal of Software, 2020, 31(3): 794-805.
[25] HAFIDI H, GHOGHO M, CIBLAT P, et al. Negative sampling strategies for contrastive self-supervised learning of graph representations[J]. Signal Processing, 2022, 190: 108310.
[26] XIAO Y, XIANG R, SUN Y, et al. Personalized entity recommendation: a heterogeneous information network approach[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining, New York, 2014: 283-292.
[27] ZHANG F, YUAN N J, LIAN D, et al. Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 2016: 353-362. |