Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (7): 315-324.DOI: 10.3778/j.issn.1002-8331.2211-0402
• Engineering and Applications • Previous Articles Next Articles
JIANG Yuzhe, CHENG Quan
Online:
2024-04-01
Published:
2024-04-01
江钰哲,成全
JIANG Yuzhe, CHENG Quan. Drug Recommendation Model for Graph Embedding Dual Graph Convolutional Network[J]. Computer Engineering and Applications, 2024, 60(7): 315-324.
江钰哲, 成全. 图嵌入式双层图卷积网络药物推荐模型[J]. 计算机工程与应用, 2024, 60(7): 315-324.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2211-0402
[1] 于蒙, 何文涛, 周绪川, 等. 推荐系统综述[J]. 计算机应用, 2022, 42(6): 1898-1913. YU M, HE W T, ZHOU X C, et al. Review of recommendation system[J]. Journal of Computer Applications, 2022, 42(6): 1898-1913. [2] 黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7): 1619-1647. HUANG L W, JIANG B T, LV S Y, et al. Survey on deep learning based recommender systems[J]. Chinese Journal of Computers, 2018, 41(7): 1619-1647. [3] SHEIKH F M, RAZZAZI F. Music similarity measurement and recommendation system using convolutional neural networks[J]. International Journal of Multimedia Information Retrieval, 2021, 10(1): 43-53. [4] 王杰, 唐菁荟, 王昊, 等. 融合主题模型和卷积神经网络的APP推荐研究[J]. 情报理论与实践, 2019, 42(4): 158-165. WANG J, TANG J H, WANG H, et al. APP recommendation study based on fusion topic model and convolution neural network[J]. Information Studies: Theory & Application, 2019, 42(4): 158-165. [5] LEE H I, CHOI I Y, MOON H S, et al. A multi-period product recommender system in online food market based on recurrent neural networks[J]. Sustainability, 2020, 12(3): 969. [6] 程淑玉, 黄淑桦, 印鉴. 融合知识图谱与循环神经网络的推荐模型[J]. 小型微型计算机系统, 2020, 41(8): 1670-1675. CHENG S Y, HUANG S Y, YING J. Recommendation model based on knowledge graph and recurrent neural network[J]. Journal of Chinese Computer Systems, 2020, 41(8): 1670-1675. [7] LYU Z, WU Y, LAI J, et al. Knowledge enhanced graph neural networks for explainable recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(5): 4954-4968. [8] 刘鑫, 梅红岩, 王嘉豪, 等. 图神经网络推荐方法研究[J]. 计算机工程与应用, 2022, 58(10): 41-49. LIU X, MEI H Y, WANG J H, et al. Research on graph neural network recommendation method[J]. Computer Engineering and Applications, 2022, 58(10): 41-49. [9] 张杰, 张月琴, 张泽华, 等. 异质信息融合网络嵌入的注意力偏好推荐方法[J]. 计算机工程与应用, 2021, 57(21): 123-131. ZHANG J, ZHANG Y Q, ZHANG Z H, et al. Attention preference recommendation methods with fusing network embedding in heterogeneous information[J]. Computer Engineering and Applications, 2021, 57(21): 123-131. [10] HASANZADEH S, FAKHRAHMAD S M, TAHERI M. Review-based recommender systems: a proposed rating prediction scheme using word embedding representation of reviews[J]. The Computer Journal, 2020, 65(2): 345-354. [11] ZHANG F, YUAN N J, LIAN D, et al. Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2016: 353-362. [12] CAO Y, WANG X, HE X, et al. Unifying knowledge graph learning and recommendation: towards a better understanding of user preferences[C]//Proceedings of the World Wide Web Conference. New York: ACM Press, 2019: 151-161. [13] ZHAO X, CHENG Z, ZHU L, et al. UGRec: modeling directed and undirected relations for recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2021: 193-202. [14] WANG H, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]//Proceedings of the 28th International Conference on World Wide Web. New York: ACM Press, 2019: 3307-3313. [15] SU Y, ZHANG R, ERFANI S M, et al. Neural graph matching based collaborative filtering[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2021: 849-858. [16] 唐宏, 范森, 唐帆. 融合协同知识图谱与优化图注意网络的推荐算法[J]. 计算机工程与应用, 2022, 58(19): 98-106. TANG H, FANG S, TANG F. Recommendation algorithm integrating collaborative knowledge graph and optimizing graph attention network[J]. Computer Engineering and Applications, 2022, 58(19): 98-106. [17] SONG J, WANG Y, TANG S, et al. Local-global memory neural network for medication prediction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(4): 1723-1736. [18] 李鹏飞, 鲁法明, 包云霞, 等. 基于医疗过程挖掘与患者体征的药物推荐方法[J]. 计算机集成制造系统, 2020, 26(6): 1668-1678. LI P F, LU F M, BAO Y X, et al. Drug recommendation method based on medical process mining and patient signs[J]. Computer Integrated Manufacturing Systems, 2020, 26(6): 1668-1678. [19] SHANG J, MA T, XIAO C, et al. Pre-training of graph augmented transformers for medication recommendation[J]. arXiv:1906.00346, 2019. [20] SU Y, SHI Y, LEE W, et al. TAHDNet: time-aware hierarchical dependency network for medication recommendation[J]. Journal of Biomedical Informatics, 2022, 129: 104069. [21] JIN Y, ZHANG W, HE X, et al. Syndrome-aware herb recommendation with multi-graph convolution network[C]//Proceedings of the 2020 IEEE 36th International Conference on Data Engineering (ICDE), 2020: 145-156. [22] 成全, 佘德昕. 融合患者体征与用药数据的图神经网络药物推荐方法研究[J]. 数据分析与知识发现, 2022(4): 1-15. CHENG Q, SHE D X. Research on drug recommendation based on graph neural network fusing patient’s signs and medication data[J]. Data Analysis and Knowledge Discovery, 2022(4): 1-15. [23] MAO C, YAO L, LUO Y. MedGCN: medication recommendation and lab test imputation via graph convolutional networks[J]. J Biomed Inform, 2022, 127: 104000. [24] 雷鸣, 夏梦鸽, 汪雪锋, 等. 基于链路预测的协同药物组合推荐研究: 面向疾病并发症诊疗[J]. 图书情报工作, 2021, 65(12): 122-129. LEI M, XIA M G, WANG X F, et al. Research on drug combination recommendation based on link prediction for concurrent diseases treatment[J]. Library and Information Service, 2021, 65(12): 122-129. [25] JI G, HE S, XU L, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, 2015: 687-696. [26] VELIKOVI P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv:1710.10903, 2017. [27] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//Advances in Neural Information Processing Systems, 2016: 3844-3852. [28] QIU J, TANG J, MA H, et al. DeepInf: social influence prediction with deep learning[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM Press, 2018: 2110-2119. [29] WANG X, HE X, CAO Y, et al. KGAT: knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM Press, 2019: 950-958. [30] XU K, LI C, TIAN Y, et al. Representation learning on graphs with jumping knowledge networks[C]//International Conference on Machine Learning, 2018: 5453-5462. [31] JOHNSON A, BULGARELLI L, et al. MIMIC-IV (version 2. 0)[DB]. PhysioNet, 2022. [32] RENDLE S, GANTNER Z, FREUDENTHALER C, et al. Fast context-aware recommendations with factorization machines[C]//Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2011: 635-644. [33] HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web. New York: ACM Press, 2017: 173-182. [34] AI Q, AZIZI V, CHEN X, et al. Learning heterogeneous knowledge base embeddings for explainable recommendation[J]. Algorithms, 2018, 11(9): 137. [35] WANG H, ZHANG F, WANG J, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM Press, 2018: 417-426. [36] WIEGREFFE S, PINTER Y. Attention is not not explanation[J]. arXiv:1908.04626, 2019. |
[1] | ZHAO Bo, WANG Yujia, NI Ji. E-TUP:Joint Knowledge Graph Learning Recommendation Method Incorporating E-CP and TUP [J]. Computer Engineering and Applications, 2024, 60(8): 99-109. |
[2] | ZHAO Wentao, XUE Saili, LIU Tiantian. Recommendation for Reducing Unrelated Neighborhoods by Combining Project Attribute Collaboration Signals [J]. Computer Engineering and Applications, 2024, 60(7): 101-107. |
[3] | XIAO Lei, LI Qi. Survey of Temporal Knowledge Graph Completion Methods [J]. Computer Engineering and Applications, 2024, 60(6): 43-54. |
[4] | HU Juan, XI Xuefeng, CUI Zhiming. Review of Conversational Machine Reading Comprehension for Knowledge Graph [J]. Computer Engineering and Applications, 2024, 60(3): 17-28. |
[5] | XIAO Peng, ZHANG Xusheng, YANG Fengyu, ZHENG Wei. Vulnerability Detection Based on Deep Graph Convolutional Network and Attention Mechanism [J]. Computer Engineering and Applications, 2024, 60(3): 292-298. |
[6] | TANG Wentao, HU Zelin. Survey of Agricultural Knowledge Graph [J]. Computer Engineering and Applications, 2024, 60(2): 63-76. |
[7] | LIU Wenjie, YAO Junfei, CHEN Liang. Knowledge Graph Embedding Model Based on k-Order Sampling and Graph Attention Networks [J]. Computer Engineering and Applications, 2024, 60(2): 113-120. |
[8] | LIANG Meilin, DUAN Youxiang, CHANG Lunjie, SUN Qifeng. Knowledge Graph Completion Method Based on Neighborhood Hierarchical Perception [J]. Computer Engineering and Applications, 2024, 60(2): 147-153. |
[9] | LIU Ping, JIANG Yongfeng, ZHANG Liang. Arbitrary Shape Text Detection Based on High-Order Graph Convolution Reasoning Network [J]. Computer Engineering and Applications, 2024, 60(1): 263-270. |
[10] | QU Licheng, QIE Liyuan, LIU Zijun, WEI Si, DONG Zhewei. Cross-Modal Emotion Analysis of Semantic and Spatio-Temporal Dynamic Interaction [J]. Computer Engineering and Applications, 2024, 60(1): 165-173. |
[11] | QIU Ling, ZHANG Ansi, ZHANG Yu, LI Shaobo, LI Chuanjiang, YANG Lei. Application Method of Knowledge Graph Construction for UAV Fault Diagnosis [J]. Computer Engineering and Applications, 2023, 59(9): 280-288. |
[12] | ZHANG Xingrui, LIU Chang, CHEN Zhe, DENG Qiangqiang, LYU Ming, LUO Qian. Short-Term Passenger Flow Prediction of Airport Subway Based on Spatio-Temporal Graph Convolutional Network [J]. Computer Engineering and Applications, 2023, 59(8): 322-330. |
[13] | QIU Yunfei, XING Haoran, LI Gang. Summary of Research on Construction of Knowledge Graph for Mine Construction [J]. Computer Engineering and Applications, 2023, 59(7): 64-79. |
[14] | WU Haoyuan, XIONG Xin, MIN Weidong, ZHAO Haoyu, WANG Wenxiang. Action Recognition Method Based on Multi-Level Feature Fusion and Temporal Extension [J]. Computer Engineering and Applications, 2023, 59(7): 134-142. |
[15] | FENG Yaru, HUANG Xianying, LI Wei. Target-Guided Conversation Model Combining Enhanced Deep Topic Semantics [J]. Computer Engineering and Applications, 2023, 59(7): 171-179. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||