[1] FU G Z, SUN P Z, ZHU W B, et al. A deep-learning-based approach for fast and robust steel surface defects classification[J]. Optics and Lasers in Engineering, 2019, 121: 397-405.
[2] LV X M, DUAN F J, JIANG J J, et al. Deep metallic surface defect detection: the new benchmark and detection network[J]. Sensors: Basel, Switzerland, 2020, 20(6): 1562.
[3] VANNOCCI M, RITACCO A, CASTELLANO A, et al. Flatness defect detection and classification in hot rolled steel strips using convolutional neural networks[M]//Advances in computational intelligence. Cham: Springer International Publishing, 2019: 220-234.
[4] HAN C J, LI G Y, LIU Z. Two-stage edge reuse network for salient object detection of strip steel surface defects[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-12.
[5] 王海云, 王剑平, 罗付华. 融合多层次特征Faster R-CNN的金属板带材表面缺陷检测研究[J]. 机械科学与技术, 2021, 40(2): 262-269.
WANG H Y, WANG J P, LUO F H. Study on surface defect detection of metal sheet and strip using faster R-CNN with multilevel feature[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 262-269.
[6] LI J Y, SU Z F, GENG J H, et al. Real-time detection of steel strip surface defects based on improved YOLO detection network[J]. IFAC PapersOnLine, 2018, 51(21): 76-81.
[7] 程婧怡, 段先华, 朱伟. 改进YOLOv3的金属表面缺陷检测研究[J]. 计算机工程与应用, 2021, 57(19): 252-258.
CHEN J Y, DUAN X H, ZHU W. Research on metal surface defect detection by improved YOLOv3[J]. Computer Engineering and Applications, 2021, 57(19): 252-258.
[8] KOU X P, LIU S J, CHENG K Q, et al. Development of a YOLO-V3-based model for detecting defects on steel strip surface[J]. Measurement, 2021, 182: 109454.
[9] 曹义亲, 伍铭林, 徐露. 基于改进YOLOv5算法的钢材表面缺陷检测[J]. 图学学报, 2023, 44(2): 335-345.
CAO Y Q, WU M L, XU L. Steel surface defect detection based on improved YOLOv5 algorithm[J]. Journal of Graphics, 2023, 44(2): 335-345.
[10] 卢海滨. 基于YOLOv5s的钢材表面缺陷检测研究[D]. 大庆: 东北石油大学, 2023.
LU H B. Research on steel surface defect detection based on YOLOv5s[D]. Daqing: Northeast Petroleum University, 2023.
[11] 司宏翔, 刘国巍. 针对小目标缺陷的YOLOv5s锚框改进方法研究[J]. 无线互联科技, 2023, 19(2): 125-127.
SI H X, LIU G W. Research on improvement method of YOLOv5s anchor frame for small target defects[J]. Wireless Internet Technology. 2023, 19(2): 125-127.
[12] 谷长江, 高法钦. 改进YOLOv5s的钢材表面缺陷检测[J]. 软件工程, 2023, 26(8): 31-34.
GU C J, GAO F Q. Steel surface defect detection based on improved YOLOv5s[J]. Software Engineering, 2023, 26(8): 31-34.
[13] 吴敌, 李明辉, 马文凯, 等. 基于改进YOLOv5的钢材表面缺陷检测[J]. 陕西科技大学学报, 2023, 41(2): 162-169.
WU D, LI M H, MA W K, et al. Surface defect detection of steel based on improved YOLOv5[J]. Journal of Shaanxi University of Science & Technology, 2023, 41(2): 162-169.
[14] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2017: 936-944.
[15] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//2018 IEEE CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2018: 8759-8768.
[16] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[J]. arXiv:1807.06521, 2018.
[17] 段必冲, 马明涛. 基于改进YOLOv5算法的口罩检测研究[J]. 计算机工程与应用, 2023, 59(16): 223-231.
DUAN B C, MA M T. Research on improved mask detection method based on YOLOv5 algorithm[J]. Computer Engineering and Applications , 2023, 59(16): 223-231.
[18] WANG J Q, CHEN K, XU R, et al. CARAFE: content-aware reassembly of features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019: 3007-3016.
[19] 邵延华, 张铎, 楚红雨, 等. 基于深度学习的YOLO目标检测综述[J]. 电子与信息学报, 2022, 44(10): 3697-3708.
SHAO Y H, ZHANG D, CHU H Y, et al. A review of YOLO object detection based on deep learning[J]. Journal of Electronics & Information Technology, 2022, 44(10): 3697-3708.
[20] WANG C, MARK L. CSPNet: a new backbone that can enhance learning capability of CNN[J]. arXiv:2003.09119, 2020.
[21] 齐向明, 柴蕊, 高一萌. 重构SPPCSPC与优化下采样的小目标检测算法[J]. 计算机工程与应用, 2023, 59(20): 158-166.
QI X M, CHAI R, GAO Y M. Algorithm of reconstructed SPPCSPC and optimized downsampling for small object detection[J]. Computer Engineering and Applications, 2023, 59(20): 158-166.
[22] 何敏, 秦亮, 赵峰, 等. 面向电力系统现场作业的安全风险管控智能检测算法[J]. 高电压技术, 2023, 49(6): 2442-2457.
HE M, QIN L, ZHAO F, et al. Intelligent detection algorithm of security risk management and control for power system on-site operation[J]. High Voltage Engineering, 2023, 49(6): 2442-2457.
[23] 贾天豪, 彭力, 戴菲菲. 引入残差学习与多尺度特征增强的目标检测器[J]. 计算机科学与探索, 2023, 17(5): 1102-1111.
JIA T H, PENG L, DAI F F. Object detector with residual learning and multi-scale feature enhancement[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1102-1111.
[24] 王鑫, 张铭. 基于申威众核架构的分组卷积计算加速与优化[J]. 计算机应用研究, 2023, 40(6): 1745-1749.
WANG X, ZHANG M. Acceleration and optimization of group convolution calculation based on SW many-core architecture[J]. Application Research of Computers, 2023, 40(6): 1745-1749.
[25] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, 2021: 13713-13722.
[26] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[27] 肖鹏程, 徐文广, 张妍, 等. 基于SE注意力机制的废钢分类评级方法[J]. 工程科学学报, 2023, 45(8): 1342-1352.
XIAO P C, XU W G, ZHANG Y, et al. Research on scrap classification and rating method based on SE attention mechanism[J]. Chinese Journal of Engineering, 2023, 45(8): 1342-1352.
[28] 李孟浩, 袁三男. 改进YOLOv5s的交通标识检测算法[J]. 南京信息工程大学学报(自然科学版), 2024, 16(1): 11-19.
LI M H, YUAN S N. Traffic sign detection algorithm based on improved YOLOv5s[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2024, 16(1): 11-19. |