[1] AHMAD R F, MALIK A S, KAMEL N, et al. Discriminating the different human brain states with EEG signals using fractal dimension: a nonlinear approach[C]//Proceedings of the 2014 IEEE International Conference on Smart Instrumentation, Measurement and Applications, 2014.
[2] FAN M L, CHOU C A. Detecting abnormal pattern of epileptic seizures via temporal synchronization of EEG signals[J]. IEEE Transactions on Biomedical Engineering, 2019, 66(3): 601-608.
[3] JEONG J H, YU B W, LEE D H, et al. Classification of drowsiness levels based on a deep spatio-temporal convolutional bidirectional LSTM network using electroencephalography signals[J]. Brain Sciences, 2019, 9(12): 348.
[4] DENG X, ZHANG B, LIU K, et al. The classification of motor imagery EEG signals based on the time-frequency-spatial feature[C]//Proceedings of the 2021 IEEE 10th Data Driven Control and Learning Systems Conference, 2021: 6-11.
[5] 许学添, 蔡跃新. 基于图卷积网络的运动想象识别[J]. 计算机工程与应用, 2022, 58(4): 186-191.
XU X T, CAI Y X. Motor imagery recognition based on graph convolution network[J]. Computer Engineering and Applications, 2022, 58 (4): 186-191.
[6] POURALI H, OMRANPOUR H. CSP-Ph-PS: learning CSP-phase space and poincare sections based on evolutionary algorithm for EEG signals recognition[J]. Expert Systems with Applications, 2023, 211: 118621.
[7] ESPINOSA R, TALERO J, WEINSTEIN A. Effects of Tau and sampling frequency on the regularity analysis of ECG and EEG signals using ApEn and SampEn entropy estimators[J]. Entropy, 2020, 22(11): 1298.
[8] PAN C, SHI C, MU H, et al. EEG-based emotion recognition using logistic regression with Gaussian kernel and laplacian prior and investigation of critical frequency bands[J]. Applied Sciences, 2020, 10(5): 1619.
[9] 燕楠, 王珏, 魏娜, 等. 基于样本熵的注意力相关脑电特征信息提取与分类[J]. 西安交通大学学报, 2007(10):1237-1241.
YAN N, WANG J, WEI N, et al. Feature exaction and classification of attention related electroencephalographic signals based on sample entropy[J]. Journal of Xi’an Jiaotong University, 2007(10):1237-1241.
[10] AMIN S U, ALSULAIMAN M, MUHAMMAD G, et al. Multilevel weighted feature fusion using convolutional neural networks for EEG motor imagery classification[J]. IEEE Access, 2019, 7: 18940-18950.
[11] ECHTIOUI A, ZOUCH W, GHORBEL M, et al. Fusion convolutional neural network for multi-class motor imagery of EEG signals classification[C]//Proceedings of the 17th IEEE International Wireless Communications and Mobile Computing Conference, 2021.
[12] LI C, YANG H H, WU X, et al. Improving EEG-based motor imagery classification using hybrid neural network[C]//Proceedings of the IEEE 9th International Conference on Information, Communication and Networks, 2021.
[13] ZHANG L, HU J F, XIONG G L. Bearing fault diagnosis using a novel classifier ensemble based on lifting wavelet packet transforms and sample entropy[J]. Shock and Vibration, 2016, 2016(3):1-13.
[14] FRIZZI S, KAABI R, BOUCHOUICHA M, et al. Convolutional neural network for video fire and smoke detection[C]//Proceedings of the 42nd Annual Conference of the IEEE Industrial Electronics Society, 2016.
[15] WANG C, WU Y, WANG C, et al. MI-EEG classification using Shannon complex wavelet and convolutional neural networks[J]. Applied Soft Computing, 2022, 130: 109685.
[16] ZENG W, LI M Q, YUAN C Z, et al. Identification of epileptic seizures in EEG signals using time-scale decomposition (ITD), discrete wavelet transform (DWT), phase space reconstruction (PSR) and neural networks[J]. Artificial Intelligence Review, 2020, 53(4): 3059-3088.
[17] CIRUGEDA-ROLDAN E M, MOLINA-PICO A, CUESTA-FRAU D, et al. Comparative study between sample entropy and detrended fluctuation analysis performance on EEG records under data loss[C]//Proceedings of the 34th Annual International Conference of the IEEE Engineering-in-Medicine-and-Biology-Society, 2012: 4233-4236.
[18] 孔祥浩, 马琳, 薄洪健, 等. CNN与CSP相结合的脑电特征提取与识别方法研究[J]. 信号处理, 2018, 34(2): 164-173.
KONG X H, MA L, BO H J, et al. Research on EEG feature extraction and recognition method based on CNN and CSP[J]. Journal of Signal Processing, 2018, 34 (2): 164-173.
[19] MATSUO Y, LECUN Y, SAHANI M, et al. Deep learning, reinforcement learning, and world models[J]. Neural Networks, 2022, 152: 267-275.
[20] BLANKERTZ B, MULLER K R, CURIO G, et al. The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 1044-1051.
[21] FATOURECHI M, BASHASHATI A, WARD R K, et al. EMG and EOG artifacts in brain computer interface systems: a survey[J]. Clinical Neurophysiology, 2007, 118(3): 480-494.
[22] LIANG W, JIN J, DALY I, et al. Novel channel selection model based on graph convolutional network for motor imagery[J]. Cognitive Neurodynamics, 2022, 17:1283-1296.
[23] MA M Z, GUO L B, SU K F, et al. Classification of motor imagery EEG signals based on wavelet transform and sample entropy[C]//Proceedings of the 2nd IEEE Advanced Information Technology, Electronic and Automation Control Conference, 2017: 905-910.
[24] LI Y P, WANG Q, WANG T, et al. Feature extraction of EEG signals based on local mean decomposition and fuzzy entropy[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2022, 61(6):4807-4820.
[25] 罗飞, 刘鹏飞, 罗元, 等. 多特征融合的运动想象脑电特征提取方法[J]. 计算机应用, 2020, 40(2): 616-620.
LUO F, LIU P F, LUO Y, et al. Motor imagery EEG feature extraction method based on multi-feature fusion[J]. Journal of Computer Applications, 2020, 40(2): 616-620.
[26] TABAR Y R, HALICI U. A novel deep learning approach for classification of EEG motor imagery signals[J]. Journal of Neural Engineering, 2017, 14(1): 016003.
[27] RAZA H, CHOWDHURY A, BHATTACHARYYA S, et al. Single-trial EEG classification with EEGNet and neural structured learning for improving BCI performance[C]//Proceedings of the International Joint Conference on Neural Networks (IJCNN) held as part of the IEEE World Congress on Computational Intelligence, 2020. |