Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (12): 48-60.DOI: 10.3778/j.issn.1002-8331.2311-0387
• Research Hotspots and Reviews • Previous Articles Next Articles
ZHANG Xiaohang, TIAN Qichuan, LIAN Lu, TAN Run
Online:
2024-06-15
Published:
2024-06-14
张晓行,田启川,廉露,谭润
ZHANG Xiaohang, TIAN Qichuan, LIAN Lu, TAN Run. Review of Research on Facial Landmark Detection[J]. Computer Engineering and Applications, 2024, 60(12): 48-60.
张晓行, 田启川, 廉露, 谭润. 人脸关键点检测研究综述[J]. 计算机工程与应用, 2024, 60(12): 48-60.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2311-0387
[1] LIU K, CAO G, ZHOU F, et al. Towards disentangling latent space for unsupervised semantic face editing[J]. IEEE Transa- ctions on Image Processing, 2022, 31: 1475-1489. [2] HOU X, ZHANG X, LIANG H, et al. Guidedstyle: attribute knowledge guided style manipulation for semantic face editing[J]. Neural Networks, 2022, 145: 209-220. [3] 吕建峰, 邵立珍, 雷雪梅. 基于深度神经网络的图像修复算法综述[J]. 计算机工程与应用, 2023, 59(20): 1-12. LYU J F, SHAO L Z, LEI X M. Image inpainting algorithm based on deep neural networks[J].Computer Engineering and Applications, 2023, 59(20): 1-12. [4] 王静婷, 李慧斌. 单张图像三维人脸重建方法综述[J]. 计算机工程与应用, 2023, 59(17): 1-21. WANG J T, LI H B. Review of single-image 3D face reconstruction methods[J].Computer Engineering and Applictions, 2023, 59(17): 1-21. [5] COOTES T F, TAYLOR C J, COOPER D H, et al. Active shape models-their training and application[J]. Computer Vision and Image Understanding, 1995, 61(1): 38-59. [6] COOTES T F, EDWARDS G J, TAYLOR C J. A comparative evaluation of active appearance model algorithms[C]//Proceedings of the British Machine Vision Conference, 1998:680-689. [7] COOTES T F, EDWARDS G J, TAYLOR C J. Active appearance models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 681-685. [8] WOLSTENHOLME C B H, TAYLOR C J. Wavelet compression of active appearance models[C]//Proceedings of the 2nd International Conference on Medical Image Computing and Computer-Assisted Intervention, 1999: 544-554. [9] COOTES T F, TAYLOR C J. Constrained active appearance models[C]//Proceedings of the IEEE Conference on Computer Vision, 2001: 748-754. [10] CRISTINACCE D, COOTES T F. Feature detection and tracking with constrained local models[C]//Procedings of the British Machine Vision Conference, 2006: 1-10. [11] YAN S, LIU C, LI S Z, et al. Face alignment using texture- constrained active shape models[J]. Image and Vision Computing, 2003, 21(1): 69-75 [12] JOSEPH C, ERIK T. Fast and robust face alignment via random ferns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011(1): 1-8. [13] KHADEMI N, DAMEN D, MAYOL W. Active learning for constrained local models[C]//Proceedings of the BMVC, 2013. [14] BELHUMEUR P N, JACOBS D W, KRIEGMAN D J, et al. Locallizing parts of faces using a consensus of exemplars[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013: 2930-2940. [15] DANTONE M, GALL J, FANELLI G, et al. Realtime facial feature detection using conditional regression forests[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2012: 2578-2585. [16] DOLLAR P, WLINDER P, PERONA P. Cascaded pose regression[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010: 1078-1085. [17] CAO X, WEI Y, WEN F, et al. Face alignment by explicit shape regression[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2012: 2887-2894. [18] YANG H, MOU W, ZHANG Y, et al. Face alignment assisted by head pose estimation[J]. arXiv:1507.03148, 2015. [19] REN S, CAO X, SUN J. Face alignment at 3000 FPS via regressing local binary features[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 1685-1692. [20] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. [21] SUN Y, WANG X. Deep convolutional network cascade for facial point detections[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2013: 3476-3483. [22] ZHOU E, FAN H, CAO Z, et al. Extensive facial landmark localization with coarse-to-fine convolutional network cascade[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops, 2013: 386-391. [23] LUO P, ZHANG Z, CHEN C L, et al. Facial landmark detection by deep multi-task learning[C]//Proceedings of the European Conference on Computer Vision, 2014: 94-108. [24] ZHANG C, ZHANG Z. Improving multiview face detection with multi-task deep convolutional neural networks[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision, 2014:1036-1041. [25] VIDIT J, LEARNED-MILLER E. FDDB: a benchmark for face detection in unconstrained settings: Technical Report UM-CS-2010-009[R].2010: 1-11. [26] ZHANG K, ZHANG Z, LI Z, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J].IEEE Signal Processing Letters, 2016, 23(10): 1499-1503. [27] HONARI S, MOLCHANOV P, TYREES, et al. Improving landmark localization with semi supervised learning[C]//Proceedings of the IEEE /CVF Conference on Computer Vision and Pattern Recognition, 2018: 1546-1555. [28] IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accurarcy with 50x fewer parameters and <0.5?MB model size[J]. arXiv:1602.07360, 2016. [29] HOWARD A G, ZHU M, CHEN B, et al. Efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.0486, 2017. [30] SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520. [31] HOWARD A, SANDLER M, CHEN T, et al. Searching for mobileNetV3[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1314-1324. [32] ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: an extremely efficient convolution neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6848-6856. [33] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. [34] HAN K, WANG Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589. [35] 朱望纯,张博. 超轻量人脸关键点检测算法[J]. 电子测量技术, 2023, 46(5): 98-104. ZHU W C, ZHANG B. Ultra-lightweight facial landmark detector[J]. Electronic Measurement Technology, 2023, 46(5): 98-104. [36] GUO X, LI S, ZHANG J, et al. PFLD: a practical facial landmark detector[J]. arXiv:1902.10859, 2019. [37] NEWELL A, YANG K, DENG J. Stacked hourglass networks for human pose estimation[C]//Proceedings of the European Conference on Computer Vision, 2016: 483-499. [38] WANG X, BO L, FU X L. Adaptive wing loss for robust face alignment via heatmap regression[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6971-6981. [39] GAO P, LU K, LYU J. A coarse-to-fine facial landmark detection method based on self-attention mechanism[J].IEEE Transactions on Multimedia, 2021,23: 926-938. [40] HUANG Y, HUANG H. Stacked attention hourglass network based robust facial landmark detection[J]. Neural Networks, 2023, 157: 323-335. [41] HUANG Y, YANG H, LI C, et al. ADNet: leveraging error-bias towards normal direction in face alignment[J]. arXiv:2109.05721, 2021. [42] KOWALSKI M, NARUNIEC J, TRZCINSKI T. Deep align- ment network: a convolutional neural network for robust face alignment[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision, 2017: 2034-2043. [43] DAPOGNY A, BAILLY K, CORD M. DeCaFA: deep convolutional cascade for face alignment in the wild[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6893-6901. [44] WAN J, LIU J, MIN W. Precise facial landmark detection by reference heatmap Transformer[J]. IEEE Transactions on Image Processing, 2023, 32: 1966-1977. [45] WMAHPOD S, DAS R, MAIORANA E, et al. Facial landmarks localization using cascaded neural networks[J]. Computer Vision and Image Understanding, 2021, 205: 103171. [46] LAI Z, WAN J, LI J, et al. Robust facial landmark detection by multiorder multiconstraint deep networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(5): 2181-2194. [47] BULAT A, TZIMIROPOULOS G. Super-FAN: integrated facial landmark localization and super-resolution of real world low resolution faces in arbitrary poses with gans[C]// Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2018: 109-117. [48] SUN K, XIAO B. Deep high?resolution representation learning for human pose estimation[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019: 5686-5696. [49] WAN J, LIU J, LAI Z, et al. Precise low-resolution facial landmark detection supervised by hallucination and transfer[J]. Elsevier BV, 2023. DOI:10.2139/ssrn.4518142. [50] ZHUANG C, LI M, ZHANG K B.Multi-level landmark-guided deep network for face super-resolution[J]. Neural Networks, 2022, 152: 276-286. [51] KAZEMI V, SULLIVAN J. One millisecond face alignment with an ensemble of regression trees[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2014: 1867-1874. [52] KAJIWARA S. Driver-condition detection using a thermal imaging camera and neural networks[J]. International Journal of Automotive Technology, 2021, 22(6):1505-1515. [53] CAI J, LIAO X, BAI J, et al. Face fatigue feature detection based on improved d-s model in complex scenes[J]. IEEE Access, 2023,11: 101790-101798. [54] CHEN L, XIN G J, LIU Y, et al. Driver fatigue detection based on facial key points and LSTM[J]. Security and Communication Neworks, 2021(8): 1-9. [55] CHEN C, GONG D, WANG H, et al. Learning spatial attention for face super-resolution[J].IEEE Transactions on Image Processing, 2021, 30: 1219-1231. [56] JING Y, LU X, GAO S. 3D face recognition: a comprehensive survey[J]. Computational Visual Media, 2023, 9(4): 657-685. [57] KIM J, JEONG H, CHO J, et al. Numerical approach to facial palsy using a novel registration method with 3D facial landmark[J]. Sensors, 2022, 22(17): 6636. [58] DUTTA K, BHATTACHARJEE D, NASIPURI M. SpPCANet: a simple deep learning-based feature extraction approach for 3D face recognition[J]. Multimedia Tools and Applications, 2020, 79(2): 1-24. [59] TOPSAKAL O, MURPHY J, CELIKOYAR M. Detecting facial landmarks on 3D models based on geometric PropErties[J]. IEEE Access, 2023,11: 25593-25603. [60] LIU L Y, KE Z R, HUO J. Head pose estimation through keypoints matching between reconstructed 3D face model and 2D image[J]. Sensors, 2021, 21(5): 1841. [61] BLANZ V, VETTER T. A morphable model for the synthesis of 3D faces[C]//Proceedings of SIGGRAPH Conference, 1999: 187-194. [62] WU C Y, XU Q G. Synergy between 3DMM and 3D landmarks for accurate 3D facial geometry[C]//Proceedings of International Conference on 3D Vision, 2021: 453-463. [63] ZHU X Y, GUO J Z. Towards fast, accurate and stable 3D dense face alignment[C]//Proceedings of the European Conference on Computer Vision, 2020: 152-168. [64] XU Y, JUNG C. Face 2D to 3D reconstruction network based on head pose and 3D facial landmarks[C]//Proceedings of the International Conference on Visual Communications and Image Proessing, 2021. [65] BULAT A, TZIMIROPOULOS G. How far are we from solving the 2D and 3D face alignment problem[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 1021-1030. [66] BULAT A, TZIMIROPOULOS G. Two-stage convolutional part heatmap regression for the 1st 3D face alignment in the wild (3DFAW) challenge[J]. arXiv:1609.09545, 2016. [67] FENG Y, WU F, SHAO X. Joint 3D face reconstruction and dense alignment with position map regression network [C]//Proceedings of the European Conference on Computer Vision, 2018: 557-574. [68] RUAN Z, ZOU C, WU L. SADRNet: self-aligned dual face regression networks for robust 3D dense face alignment and reconstruction[J]. IEEE Transactions on Image Processing, 2021, 30: 5793-5806. [69] 朱江平, 王睿珂, 段智涓, 等. 基于多尺度注意力机制相位展开的三维人脸建模[J].光学学报, 2022(1): 155-166. ZHU J P, WANG R K, DUAN Z J, et al. Three-dimensional face modeling based on multi-scale attention phase unwrapping[J]. Acta Optica Sinica, 2022(1): 155-166. [70] DI L, ZHANG J, LIANG J. Face alignment combined with shape constraints and Gaussian heatmap[J]. International Journal of Machine Learning and Cybernetics, 2023, 14(12): 4311-4324. [71] SAGONAS C, PANTIC M, ZAFEIRIOU S, et al. 300 faces in-the-wild challenge: the first facial landmark localization challenge[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision Workshops, 2013: 397-403. [72] WU W, QIAN C, YANG S, et al. Look at boundary: a bound-ary-aware face alignment algorithm[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 2129-2138. [73] BURGOS X P, PERONA P, DOLLAR P. Robust face landmark estimation under occlusion[C]//Proceedings of the IEEE International Conference on Computer Vision, 2013: 1513-1520. [74] XUAN Y D, YI Y. Teacher supervises students how to learn from partially labeled images for facial landmark detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 783-792. [75] SHEN J, ZAFEIRIOU S, KOSSAIFI J. The first facial landmark tracking in-the-wild challenge: benchmark and results[C]//Proceedings of the IEEE International Conference on Computer Vision Workshop, 2015: 50-58. [76] ZHU X, LI S Z. Face alignment across large poses: a 3D solution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 146-155. [77] ZHU X, LEI Z. High-fifidelity pose and expression normalization for face recognition in the wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 787-796. [78] FANELLI G, DANTONE M, GALL J. Random forests for real time 3D face analysis[J]. International Journal of Computer Vision, 2013, 101(3): 437-458. [79] 谢扬. 基于回归方法的人脸关键点检测算法研究[D]. 广州: 华南理工大学, 2021. XIE Y. Research on face keypoints detection algorithm based on regression methods[D]. Guangzhou: South China University of Technology, 2021. [80] 刘欣. 轻量级人脸关键点检测算法研究[D]. 合肥: 安徽大学, 2020. LIU X. Research on lightweight facial landmark detection[D]. Hefei: Anhui University, 2020. [81] 张佳慧. 针对多姿态人脸的特征点定位算法研究[D]. 无锡: 江南大学, 2022. ZHANG J H. Research on facial landmark localization algorithm for multi-pose face image[D]. Wuxi: Jiangnan University, 2022. [82] 李丹阳. 基于深度学习的人脸关键点检测算法研究[D]. 武汉: 华中科技大学, 2021. LI D Y. Facial landmark detection research based on deep learning[D]. Wuhan: Huazhong University of Science and Technology, 2021. [83] 黄泄合. 基于深度学习的人脸关键点检测算法研究[D]. 北京: 北京邮电大学, 2020. HUANG X H. Research on deep learning based facial land- mark detection algorithm[D]. Beijing: Beijing University of Posts and Telecommunications, 2020. [84] 石胡森. 基于深度学习的人脸关键点检测方法研究[D]. 合肥: 中国科学技术大学, 2020. SHI H S. Research on facial landmark detection methods based on deep learning[D]. Hefei: University of Science and Technology of China, 2020. |
[1] | WANG Cailing, YAN Jingjing, ZHANG Zhidong. Review on Human Action Recognition Methods Based on Multimodal Data [J]. Computer Engineering and Applications, 2024, 60(9): 1-18. |
[2] | LIAN Lu, TIAN Qichuan, TAN Run, ZHANG Xiaohang. Research Progress of Image Style Transfer Based on Neural Network [J]. Computer Engineering and Applications, 2024, 60(9): 30-47. |
[3] | YANG Chenxi, ZHUANG Xufei, CHEN Junnan, LI Heng. Review of Research on Bus Travel Trajectory Prediction Based on Deep Learning [J]. Computer Engineering and Applications, 2024, 60(9): 65-78. |
[4] | SONG Jianping, WANG Yi, SUN Kaiwei, LIU Qilie. Short Text Classification Combined with Hyperbolic Graph Attention Networks and Labels [J]. Computer Engineering and Applications, 2024, 60(9): 188-195. |
[5] | CHE Yunlong, YUAN Liang, SUN Lihui. 3D Object Detection Based on Strong Semantic Key Point Sampling [J]. Computer Engineering and Applications, 2024, 60(9): 254-260. |
[6] | QIU Yunfei, WANG Yifan. Multi-Level 3D Point Cloud Completion with Dual-Branch Structure [J]. Computer Engineering and Applications, 2024, 60(9): 272-282. |
[7] | YE Bin, ZHU Xingshuai, YAO Kang, DING Shangshang, FU Weiwei. Binocular Depth Measurement Method for Desktop Interaction Scene [J]. Computer Engineering and Applications, 2024, 60(9): 283-291. |
[8] | ZHOU Bojun, CHEN Zhiyu. Survey of Few-Shot Image Classification Based on Deep Meta-Learning [J]. Computer Engineering and Applications, 2024, 60(8): 1-15. |
[9] | SUN Shilei, LI Ming, LIU Jing, MA Jingang, CHEN Tianzhen. Research Progress on Deep Learning in Field of Diabetic Retinopathy Classification [J]. Computer Engineering and Applications, 2024, 60(8): 16-30. |
[10] | WANG Weitai, WANG Xiaoqiang, LI Leixiao, TAO Yihao, LIN Hao. Review of Construction and Applications of Spatio-Temporal Graph Neural Network in Traffic Flow Prediction [J]. Computer Engineering and Applications, 2024, 60(8): 31-45. |
[11] | XIE Weiyu, ZHANG Qiang. Review on Detection of Drones and Birds in Photoelectric Images Based on Deep Learning Convolutional Neural Network [J]. Computer Engineering and Applications, 2024, 60(8): 46-55. |
[12] | ZHOU Dingwei, HU Jing, ZHANG Liangrui, DUAN Feiya. Collaborative Correction Technology of Label Omission in Dataset for Object Detection [J]. Computer Engineering and Applications, 2024, 60(8): 267-273. |
[13] | CHANG Xilong, LIANG Kun, LI Wentao. Review of Development of Deep Learning Optimizer [J]. Computer Engineering and Applications, 2024, 60(7): 1-12. |
[14] | ZHOU Yutong, MA Zhiqiang, XU Biqi, JIA Wenchao, LYU Kai, LIU Jia. Survey of Deep Learning-Based on Emotion Generation in Conversation [J]. Computer Engineering and Applications, 2024, 60(7): 13-25. |
[15] | JIANG Liang, ZHANG Cheng, WEI Dejian, CAO Hui, DU Yuzheng. Deep Learning in Aided Diagnosis of Osteoporosis [J]. Computer Engineering and Applications, 2024, 60(7): 26-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||