Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (7): 13-25.DOI: 10.3778/j.issn.1002-8331.2304-0131
• Research Hotspots and Reviews • Previous Articles Next Articles
ZHOU Yutong, MA Zhiqiang, XU Biqi, JIA Wenchao, LYU Kai, LIU Jia
Online:
2024-04-01
Published:
2024-04-01
周钰童,马志强,许璧麒,贾文超,吕凯,刘佳
ZHOU Yutong, MA Zhiqiang, XU Biqi, JIA Wenchao, LYU Kai, LIU Jia. Survey of Deep Learning-Based on Emotion Generation in Conversation[J]. Computer Engineering and Applications, 2024, 60(7): 13-25.
周钰童, 马志强, 许璧麒, 贾文超, 吕凯, 刘佳. 基于深度学习的对话情绪生成研究综述[J]. 计算机工程与应用, 2024, 60(7): 13-25.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2304-0131
[1] MARIETTO M, AGUIAR R, BARBOSA G, et al. Artificial intelligence markup language: a brief tutorial[J]. arXiv:1307. 3091,2013. [2] PRENDINGER H, MORI J, ISHIZUKA M. Using human physiology to evaluate subtle expressivity of a virtual quizmaster in a mathematical game[J]. International Journal of Human-Computer Studies, 2005, 62(2): 231-245. [3] 陈晓婷, 李实. 对话情绪识别综述[J]. 计算机工程与应用, 2023, 59(3): 33-48. CHEN X T, LI S. Survey on emotion recognition in conversation[J]. Computer Engineering and Applications, 2023, 59(3): 33-48. [4] ZHOU H, HUANG M, ZHANG T, et al. Emotional chatting machine: emotional conversation generation with internal and external memory[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018. [5] WANG K, WAN X, SENTIGA N, et al. Generating sentimental texts via mixture adversarial networks[C]//Proceedings of IJCAI, 2018: 4446-4452. [6] PICARD R W. Affective computing[M]. London, England: MIT Press, 1997. [7] 王志良. 人工心理与人工情感[J]. 智能系统学报, 2006, 1(1): 38-43. WANG Z L. Artificial psychology and artificial emotion[J]. CAAI Transactions on Intelligent Systems, 2006, 1(1): 38-43. [8] MUNEZERO M D, MONTERO C S, SUTINEN E, et al. Are they different? Affect, feeling, emotion, sentiment, and opinion detection in text[J]. IEEE Transactions on Affective Computing, 2014, 5(2): 101-111. [9] CHAO C H, LUN W K. SocialNLP 2018 EmotionX challenge overview: recognizing emotions in dialogues[C]//Proceedings of the Sixth International Workshop on Natural Language Processing for Social Media, Melbourne, Australia, 2018: 27-31. [10] JIAO W X, YANG H Q, KING I, et al. HiGRU: hierarchical gated recurrent units for utterance-level emotion recognition[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota, 2019: 397-406. [11] JIE C, MICHAEL T, ZAC I, et al. ?Observing dialogue in therapy: categorizing and forecasting behavioral codes[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 2019: 5599-5611. [12] ZHANG D, WU L, SUN C L, et al. Modeling both context- and speaker-sensitive dependence for emotion detection in multi-speaker conversations[C]//Proceedings of the International Joint Conference on Artificial Intelligence, 2019. [13] BU J H, REN L, ZHENG S, et al. ASAP: a Chinese review dataset towards aspect category sentiment analysis and rating prediction[C]//Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2021: 2069-2079. [14] LI Y R, LI K, NING H K, et al. Towards an online empathetic chatbot with emotion causes[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’21), New York, NY, USA, 2021: 2041-2045. [15] TIAN H, GAO C, XIAO X Y, et al. ?SKEP: sentiment knowledge enhanced pre-training for sentiment analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020: 4067-4076. [16] 赵妍妍, 陆鑫, 赵伟翔, 等. 情感对话技术综述[J/OL]. 软件学报: 1-26[2023-06-05]. https://doi.org/10.13328/j.cnki.jos. 006807. ZHAO Y Y, LU X, ZHAO W X, et al. Survey on emotional dialogue techniques[J/OL]. Journal of Software: 1-26[2023-06-05]. https://doi.org/10.13328/j.cnki.jos.006807. [17] MAYER J D. What is emotional intelligence?[Z]. 2004. [18] COLOMBO P, WITON W, MODI A, et al. Affect-driven dialog generation[J]. arXiv:1904.02793, 2019. [19] MA Y, NGUYEN K L, XING F Z, et al. A survey on empathetic dialogue systems[J]. Information Fusion, 2020, 64: 50-70. [20] MAO Y, CAI F, GUO Y, et al. Incorporating emotion for response generation in multi-turn dialogues[J]. Applied Intelligence, 2022, 52(7): 7218-7229. [21] PORIA S, CAMBRIA E, HAZARIKA D, et al. Context-dependent sentiment analysis in user-generated videos[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Jul 31-Aug 4, 2017. Stroudsburg, PA: ACL, 2017: 873-883. [22] HSU C C, CHEN S Y, KUO C C, et al. EmotionLines: an emotion corpus of multi-party conversations[C]//Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan, 2018. ? [23] MA D, LI S, ZHANG X, et al. Interactive attention networks for aspect-level sentiment classification[J]. arXiv:1709.00893,2017. [24] LI W, SHAO W, JI S, et al. BiERU: bidirectional emotional recurrent unit for conversational sentiment analysis[J]. Neurocomputing, 2022, 467: 73-82. [25] BOWMAN S R, VILNIS L, VINYALS O, et al. Generating sentences from a continuous space[J]. arXiv:1511.06349, 2015. [26] IULIAN S, ALESSANDRO S, RYAN L, et al. A hierarchical latent variable encoder-decoder model for generating dialogues[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2017: 3295-3301. [27] XIANG B, ZHOU L. Improving twitter sentiment analysis with topic-based mixture modeling and semi-supervised training[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), 2014: 434-439. [28] RANA T A, CHEAH Y N, LETCHMUNAN S. Topic modeling in sentiment analysis: a systematic review[J]. Journal of ICT Research & Applications, 2016, 10(1): 76-93. [29] REN Y, ZHANG Y, ZHANG M, et al. Improving twitter sentiment classification using topic-enriched multi-prototype word embeddings[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2016. [30] 王建成, 徐扬, 刘启元, 等. 基于神经主题模型的对话情感分析[J]. 中文信息学报, 2020, 34(1): 106-112. WANG J C, XU Y, LIU Q Y, et al. Dialog sentiment analysis with neural topic model[J]. Journal of Chinese Information Processing, 2020, 34(1): 106-112. [31] ZHU L, PERGOLA G, GUI L, et al. Topic-driven and knowledge-aware transformer for dialogue emotion detection[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume1: Long Papers), 2021. [32] HAZARIKA R, ?PORIA S, ?MIHALCEA R, et al. ?ICON: interactive conversational memory network for multimodal emotion detection[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 2018: 2594-2604. [33] MAJUMDER N, PORIA S, HAZARIKA D, et al. Dialoguernn: an attentive RNN for emotion detection in conversations[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 6818-6825. [34] GHOSAL D, ?MAJUMDER N, PORIA S, et al. DialogueGCN: a graph convolutional neural network for emotion recognition in conversation[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 2019: 154-164. [35] ZHANG D, WU L, SUN C, et al. Modeling both context-and speaker-sensitive dependence for emotion detection in multi-speaker conversations[C]//Proceedings of IJCAI, 2019: 5415-5421. [36] HU D, WEI L, HUAI X, et al. DialogueCRN: contextual reasoning networks for emotion recognition in conversations[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 2021. [37] CERISARA C, JAFARITAZEHJANI S, OLUOKUN A, et al. Multi-task dialog act and sentiment recognition on Mastodon[C]//Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, New Mexico, Aug 20-26, 2018. Stroudsburg, PA: ACL, 2018: 745-754. [38] KIM M, KIM H. Integrated neural network model for identifying speech acts, predicators, and sentiments of dialogue utterances[J]. Pattern Recognition Letters, 2018, 101: 1-5. [39] LI J, FEI H, JI D H. Modeling local contexts for joint dialogue act recognition and sentiment classification with bi-channel dynamic convolutions[C]//Proceedings of the 28th International Conference on Computational Linguistics, Barcelona, Spain, 2020: 616-626. [40] QIN L, CHE W, LI Y, et al. DCR-Net: a deep co-interactive relation network for joint dialog act recognition and sentiment classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 8665-8672. [41] QIN L, LI Z, CHE W, et al. Co-GAT: a co-interactive graph attention network for joint dialog act recognition and sentiment classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 13709-13717. [42] XING B W, TSANG I. DARER: dual-task temporal relational recurrent reasoning network for joint dialog sentiment classification and act recognition[C]//Findings of the Association for Computational Linguistics (ACL 2022), Dublin, Ireland, 2022: 3611-3621. [43] CAO J, TANANA M, IMEL Z E, et al. Observing dialogue in therapy: categorizing and forecasting behavioral codes[J]. arXiv:1907.00326, 2019. [44] BOSSELUT A, RASHKIN H, SAP M, et al. COMET: commonsense transformers for automatic knowledge graph construction[J]. arXiv:1906.05317, 2019. [45] MATTHEW P, MARK N. Deep contextualized word representations[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2018, 2227-2237. [46] ZHOU H, YOUNG T. Commonsense knowledge aware conversation generation with graph attention[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018: 4623-4629. [47] ROBYN S, JOSHUA C. ConceptNet 5.5: an open multilingual graph of general knowledge[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence, 2017: 4444-4451. [48] MAARTEN S, RONAN L. ATOMIC: an atlas of machine commonsense for if-then reasoning[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, 2019: 3027-3035. [49] TOMAS M I, CHEN K. Efficient estimation of word representations in vector space[C]//Proceedings of the 1st International Conference on Learning Representations, 2013. [50] HANNAH R, MAARTEN S, EMILY A, et al. event2mind: commonsense inference on events, intents, and reactions[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2018: 463-473. [51] JEFFREY P, RICHARD S, CHRISTOPHER M. GloVe: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, 2014: 1532-1543. [52] GHOSAL D, MAJUMDER N, GELBUKH A, et al. Cosmic: commonsense knowledge for emotion identification in conversations[J]. arXiv:2010.02795, 2020. [53] ZHONG P X, WANG D. Knowledge-enriched transformer for emotion detection in textual conversations[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 2019: 165-176. [54] KINGMA D P, WELLING M. Auto-encoding variational bayes[J]. arXiv:1312.6114, 2013. [55] LI J N, LIN Z, FU P, et al. Past, present, and future: conversational emotion recognition through structural modeling of psychological knowledge[C]//Findings of the Association for Computational Linguistics (EMNLP 2021), Punta Cana, Dominican Republic, 2021: 1204-1214. [56] LI D, ZHU X, LI Y, et al. Enhancing emotion inference in conversations with commonsense knowledge[J]. Knowledge-Based Systems, 2021, 232: 107449. [57] LI W, ZHU L, MAO R, et al. SKIER: a symbolic knowledge integrated model for conversational emotion recognition[C]//Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence, 2023. [58] ZHAO W X, ZHOU K, LI J, et al. A survey of large language models[J]. arXiv:2303.18223,2023. [59] BAO S, HE H, WANG F, et al. PLATO-XL: exploring the large-scale pre-training of dialogue generation[J]. arXiv:2109. 09519, 2021. [60] HASEGAWA T, ?KAJI N. Predicting and eliciting addressee’s emotion in online dialogue[C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, 2013: 964-972. [61] BOTHE C, SVEN M. Dialogue based neural learning to estimate the sentiment of a next upcoming utterance[C]//Proceedings of the 26th International Conference on Artificial Neural Networks, 2017: 477-485. [62] WANG Z Q, ZHU X J, ZHANG Y, et al. Sentiment forecasting in dialog[C]//Proceedings of the 28th International Conference on Computational Linguistics, 2020: 2448-2458. [63] RASHKIN H, MICHAEL S. Towards empathetic open-domain conversation models: a new benchmark and dataset[C]//Proceedings of the 57th annual meeting of the Association for Computational Linguistics, 2019. [64] HANNAH R, ANTOINE B, MAARTEN S, et al. Modeling naive psychology of characters in simple commonsense stories[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 2018: 2289-2299. [65] GAONKER R, ?KWON H. Modeling label semantics for predicting emotional reactions[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020: 4687-4692. [66] KIM J, YOO J, LIM H, et al. Sentiment prediction using collaborative filtering[C]//Proceedings of the International AAAI Conference on Web and Social Media, ?2021: 685-688. [67] THAVAREESAN S, MAHESAN S. Sentiment lexicon expansion using Word2vec and fastText for sentiment prediction in Tamil texts[C]//2020 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 2020: 272-276. [68] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv:1301.3781, 2013. [69] ARMAND J, EDOUARD G, PIOTR B, et al. Bag of tricks for efficient text classification[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (Volume 2, Short Papers), Valencia, Spain, 2017: 427-431. [70] PATRICK H, GIUSEPPE C. ?From sentiment annotations to sentiment prediction through discourse augmentation[C]//Proceedings of the 28th International Conference on Computational Linguistics, Barcelona, Spain, 2020: 185-197. [71] WANG X, JI H Y, SHI C, et al. Heterogeneous graph attention network[C]//The World Wide Web Conference (WWW’19), New York, NY, 2019. [72] TAI K S, SOCHER R, MANNING C D. Improved semantic representations from tree-structured long short-term memory networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Beijing, China, 2015: 1556-1566. [73] LI D Y, LI Y, WANG S G. Interactive double states emotion cell model for textual dialogue emotion prediction[J]. Knowledge-Based Systems, 2020, 189: 105084. [74] CHANG Y C, HSING Y C. Emotion-infused deep neural network for emotionally resonant conversation[J]. Applied Soft Computing, 2021, 113: 107861. [75] YANG Z, ASYROFI M H, LO D. BiasRV: uncovering biased sentiment predictions at runtime[C]//Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2021: 1540-1544. [76] YANG H , SHEN J. Emotion dynamics modeling via BERT[C]//Proceedings of the International Conference on Neural Networks (IJCNN 2021), 2021. [77] CHEN Z, SONG R , XIE X , et al. Neural response generation with relevant emotions for short text conversation[M]. Cham: Springer, 2019. [78] WEI W, LIU J, MAO X, et al. Emotion-aware chat machine: for human-like emotional interaction[C]//Proceedings of the 28th ACM International Conference, 2019. [79] ZHOU L, GAO J, D LI, et al. The design and implementation of Xiaoice, an empathetic social chatbot[J]. Computational Linguistics, 2020, 46(1): 1-62. [80] GHOSH S, CHOLLET M, LAKSANA E, et al. Affect-LM: a neural language model for customizable affective text generation[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Jul 30- Aug 4, 2017. Stroudsburg, PA: ACL, 2017: 634-642. [81] ASGHAR N, POUPART P, HOEY J, et al. Affective neural response generation[C]//Proceedings of the European Conference on Information Retrieval. Cham: Springer, 2018: 154-166. [82] 裴正蒙. 情绪引导式情感对话系统研究[D]. 合肥: 合肥工业大学, 2020. PEI Z M. Research on emotion-guided emotion dialogue system[D]. Hefei: Hefei University of Technology, 2020. [83] WEN Z, CAO J, YANG R, et al. Automatically select emotion for response via personality affected emotion transition[C]//The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021), 2021. [84] YANG L, SHEN Y, MAO Y, et al. Hybrid curriculum learning for emotion recognition in conversation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 11595-11603. [85] BUSSO C, BULUT M, LEE C, ?et al. ?IEMOCAP: interactive emotional dyadic motion capture database[J]. Language Resources & Evaluation, ?2008, 42: 335-359. [86] LI Y R, SU H, SHEN X Y, et al. DailyDialog: a manually labelled multi-turn dialogue dataset[C]//Proceedings of the 8th International Joint Conference on Natural Language Processing, 2017: 986-995. [87] ZAHIRI S M, CHOI J D. Emotion detection on TV show transcripts with sequence-based convolutional neural networks[J]. arXiv:1708.04299, 2017. [88] SOUJANYA P, DEVAMANYU H, NAVONIL M, et al. MELD: a multimodal multi-party dataset for emotion recognition in conversations[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 2019: 527-536. [89] LIU S Y, ZHENG C J. Towards emotional support dialog systems[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics, 2021. [90] WANG H, LU Z D, LI H, et al. A dataset for research on short-text conversations[C]//Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, Seattle, Washington, USA, 2013: 935-945. [91] WEN Z Y, CAO J N, YANG R S, et al. ?Automatically select emotion for response via personality-affected emotion transition[C]//Findings of the Association for Computational Linguistics (ACL-IJCNLP 2021), 2021: 5010-5020. [92] CHEN Y, FAN W, XING X, et al. CPED: a large-scale Chinese personalized and emotional dialogue dataset for conversational AI[J]. arXiv:2205.14727, 2022. [93] COSTA P T, MCCRAE R R. Normal personality assessment in clinical practice: the NEO personality inventory[J]. Psychological Assessment, 1992, 4(1): 5. [94] DALE R. GPT-3: what’s it good for?[J]. Natural Language Engineering, 2021, 27(1): 113-118. |
[1] | ZHOU Bojun, CHEN Zhiyu. Survey of Few-Shot Image Classification Based on Deep Meta-Learning [J]. Computer Engineering and Applications, 2024, 60(8): 1-15. |
[2] | SUN Shilei, LI Ming, LIU Jing, MA Jingang, CHEN Tianzhen. Research Progress on Deep Learning in Field of Diabetic Retinopathy Classification [J]. Computer Engineering and Applications, 2024, 60(8): 16-30. |
[3] | WANG Weitai, WANG Xiaoqiang, LI Leixiao, TAO Yihao, LIN Hao. Review of Construction and Applications of Spatio-Temporal Graph Neural Network in Traffic Flow Prediction [J]. Computer Engineering and Applications, 2024, 60(8): 31-45. |
[4] | XIE Weiyu, ZHANG Qiang. Review on Detection of Drones and Birds in Photoelectric Images Based on Deep Learning Convolutional Neural Network [J]. Computer Engineering and Applications, 2024, 60(8): 46-55. |
[5] | ZHOU Dingwei, HU Jing, ZHANG Liangrui, DUAN Feiya. Collaborative Correction Technology of Label Omission in Dataset for Object Detection [J]. Computer Engineering and Applications, 2024, 60(8): 267-273. |
[6] | CHANG Xilong, LIANG Kun, LI Wentao. Review of Development of Deep Learning Optimizer [J]. Computer Engineering and Applications, 2024, 60(7): 1-12. |
[7] | JIANG Liang, ZHANG Cheng, WEI Dejian, CAO Hui, DU Yuzheng. Deep Learning in Aided Diagnosis of Osteoporosis [J]. Computer Engineering and Applications, 2024, 60(7): 26-40. |
[8] | LIU Jianhua, WANG Nan, BAI Mingchen. Progress of Instantiated Reality Augmentation Method for Smart Phone Indoor Scene Elements [J]. Computer Engineering and Applications, 2024, 60(7): 58-69. |
[9] | HAO Zhifeng, LIU Jun, WEN Wen, CAI Ruichu. Temporal Event Prediction Based on Implicit Relationship of Multiple Sequences [J]. Computer Engineering and Applications, 2024, 60(7): 119-127. |
[10] | YUAN Jing, PAN Su, XIE Hao, XU Wenpeng. Stock Price Prediction Integrating Investor Sentiment Based on S_AM_BiLSTM Model [J]. Computer Engineering and Applications, 2024, 60(7): 274-281. |
[11] | TAN Zhenlin, LIU Ziliang, HUANG Aiquan, CHEN Huihui, ZHONG Yong. Review of Deep Learning Methods for Palm Vein Recognition [J]. Computer Engineering and Applications, 2024, 60(6): 55-67. |
[12] | LAI Jing’an, CHEN Ziqiang, SUN Zongwei, PEI Qingqi. Lightweight Foggy Weather Object Detection Method Based on YOLOv5 [J]. Computer Engineering and Applications, 2024, 60(6): 78-88. |
[13] | RUAN Hui, HUANG Xixia, LI Dengfeng, WANG Le. Research on Fine-Grained Fault Diagnosis of Rolling Bearings [J]. Computer Engineering and Applications, 2024, 60(6): 312-322. |
[14] | SU Chenyang, WU Wenhong, NIU Hengmao, SHI Bao, HAO Xu, WANG Jiamin, GAO Le, WANG Weitai. Review of Deep Learning Approaches for Recognizing Multiple Unsafe Behaviors in Workers [J]. Computer Engineering and Applications, 2024, 60(5): 30-46. |
[15] | Abudukelimu Halidanmu, FENG Ke, SHI Yaqing, Abudukelimu Nihemaiti, Abulizi Abudukelimu. Review of Applications of Deep Learning in Fracture Diagnosis [J]. Computer Engineering and Applications, 2024, 60(5): 47-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||