Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (7): 26-40.DOI: 10.3778/j.issn.1002-8331.2305-0030
• Research Hotspots and Reviews • Previous Articles Next Articles
JIANG Liang, ZHANG Cheng, WEI Dejian, CAO Hui, DU Yuzheng
Online:
2024-04-01
Published:
2024-04-01
姜良,张程,魏德健,曹慧,杜昱峥
JIANG Liang, ZHANG Cheng, WEI Dejian, CAO Hui, DU Yuzheng. Deep Learning in Aided Diagnosis of Osteoporosis[J]. Computer Engineering and Applications, 2024, 60(7): 26-40.
姜良, 张程, 魏德健, 曹慧, 杜昱峥. 深度学习在骨质疏松辅助诊断中的应用[J]. 计算机工程与应用, 2024, 60(7): 26-40.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2305-0030
[1] COMPSTON J, COOPER A, COOPER C, et al. UK clinical guideline for the prevention and treatment of osteoporosis[J]. Archives of Osteoporosis, 2017, 12: 1-24. [2] SI L, WINZENBERG T M, JIANG Q, et al. Projection of osteoporosis-related fractures and costs in China: 2010—2050[J]. Osteoporosis International, 2015, 26: 1929-1937. [3] ADAMI G, FASSIO A, GATTI D, et al. Osteoporosis in 10 years time: a glimpse into the future of osteoporosis[J]. Therapeutic Advances in Musculoskeletal Disease, 2022, 14: 1759720X221083541. [4] 史哲, 万全增, 李春雯. 医学影像学在骨质疏松症诊断中的应用价值[J]. 中国骨质疏松杂志, 2010, 16(12): 969-971. SHI Z, WAN Q Z, LI C W. Potential of medical imaging in osteoporosis diagnosis[J]. Chinese Journal of Osteoporosis, 2010, 16(12): 969-971. [5] 田伟, 韩晓光, 张琦. 人工智能在骨科中的应用及展望[J]. 中华创伤骨科杂志, 2021, 23(4): 277-280. TIAN W, HAN X G, ZHANG Q. Application and prospect of artificial intelligence in orthopedics[J]. Chinese Journal of Orthopaedic Trauma, 2021, 23(4): 277-280. [6] KALMET P H S, SANDULEANU S, PRIMAKOV S, et al. Deep learning in fracture detection: a narrative review[J]. Acta Orthopaedica, 2020, 91(2): 215-220. [7] FATHIMA S M N, TAMILSELVI R, BEHAM M P. DEXSIT: a benchmark database for BMD measurement and analysis[C]//2018 Fourth International Conference on Biosignals, Images and Instrumentation, 2018: 206-212. [8] FATHIMA S M N, TAMILSELVI R, BEHAM M P. XSITRAY: a database for the detection of osteoporosis condition[J]. Biomedical and Pharmacology Journal, 2019, 12(1): 267-271. [9] RAJPURKAR P, IRVIN J, BAGUL A, et al. Mura dataset: towards radiologist-level abnormality detection in muscu-loskeletal radiographs[J]. arXiv:1712.06957, 2017. [10] CHENG P, YANG Y, YU H, et al. Automatic vertebrae locali- zation and segmentation in CT with a two-stage Dense-U-Net[J]. Scientific Reports, 2021, 11(1): 22156. [11] SEKUBOYINA A, HUSSEINI M E, BAYAT A, et al. VerSe: a vertebrae labelling and segmentation benchmark for multi-detector CT images[J]. Medical Image Analysis, 2021, 73: 102166. [12] DENG Y, WANG C, HUI Y, et al. CTSpine1K: a large-scale dataset for spinal vertebrae segmentation in computed tomography[J]. arXiv:2105.14711, 2021. [13] AREECKAL A S, KOCHER M. Current and emerging diagnostic imaging-based techniques for assessment of osteoporosis and fracture risk[J]. IEEE Reviews in Biomedical Engineering, 2018, 12: 254-268. [14] 李小玲, 易银芝, 董林, 等. 人工智能技术在骨科领域的应用进展[J]. 全科护理, 2020, 18(29): 3937-3939. LI X L, YI Y Z, DONG L, et al. Advances in the application of artificial intelligence technology in orthopedics[J]. Chinese General Practice Nursing, 2020, 18(29): 3937-3939. [15] GUO G, WANG H, BELL D, et al. KNN model-based approach in classification[C]//OTM Confederated International Conferences “On the Move to Meaningful Internet Systems”, 2003: 986-996. [16] HEARST M A, DUMAIS S T, OSUNA E, et al. Support vector machines[J]. IEEE Intelligent Systems and Their Applications, 1998, 13(4): 18-28. [17] LAVALLEY M P. Logistic regression[J]. Circulation, 2008, 117(18): 2395-2399. [18] 杨培伟, 周余红, 邢岗, 等. 卷积神经网络在生物医学图像上的应用进展[J]. 计算机工程与应用, 2021, 57(7): 44-58. YANG P W, ZHOU Y H, XING G, et al. Applications of convolutional neural network in biomedical image[J]. Computer Engineering and Applications, 2021, 57(7): 44-58. [19] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [20] JANG R, CHOI J H, KIM N, et al. Prediction of osteoporosis from simple hip radiography using deep learning algorithm[J]. Scientific Reports, 2021, 11(1): 19997. [21] WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7794-7803. [22] SIMONYAN K, ZISSERMAN A. Very deep convolu-tional networks for large-scale image recognition[J]. arXiv:1409.1556,2014. [23] LEE K S, JUNG S K, RYU J J, et al. Evaluation of transfer learning with deep convolutional neural networks for screening osteoporosis in dental panoramic radiographs[J]. Journal of Clinical Medicine, 2020, 9(2): 392. [24] 杨莉, 万旺根. 基于预训练-微调策略的COVID-19预测模型[J]. 计算机工程, 2022, 48(3): 17-22. YANG L, WAN W G. COVID-19 prediction model based on pre-training and fine-tuning strategy[J]. Computer Engineering, 2022, 48 (3): 17-22. [25] 陈道争, 江倩. 基于卷积神经网络和迁移学习的肺结节检测[J]. 计算机工程与设计, 2021, 42(1): 240-247. CHEN D Z, JIANG Q. Pulmonary nodule detection based on convolutional neural networks with transfer learning[J]. Computer Engineering and Design, 2021, 42(1): 240-247. [26] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778. [27] YAMAMOTO N, SUKEGAWA S, YAMASHITA K, et al. Effect of patient clinical variables in osteoporosis classification using hip X-rays in deep learning analysis[J]. Medicina, 2021, 57(8): 846. [28] KONG S H, LEE J W, BAE B U, et al. Development of a spine X-ray-based fracture prediction model using a deep learning algorithm[J]. Endocrinology and Metabolism, 2022, 37(4): 674-683. [29] LEE S, CHOE E K, KANG H Y, et al. The exploration of feature extraction and machine learning for predicting bone density from simple spine X-ray images in a Korean population[J]. Skeletal Radiology, 2020, 49: 613-618. [30] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2818-2826. [31] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. [32] SPEISER J L, MILLER M E, TOOZE J, et al. A comparison of random forest variable selection methods for classification prediction modeling[J]. Expert Systems with Applications, 2019, 134: 93-101. [33] YAMAMOTO N, SUKEGAWA S, KITAMURA A, et al. Deep learning for osteoporosis classification using hip radiographs and patient clinical covariates[J]. Biomolecules, 2020, 10(11): 1534. [34] TAN M, LE Q. Efficientnet: rethinking model scaling for convolutional neural networks[C]//International Conference on Machine Learning, 2019: 6105-6114. [35] SUKEGAWA S, FUJIMURA A, TAGUCHI A, et al. Identification of osteoporosis using ensemble deep learning model with panoramic radiographs and clinical covariates[J]. Scientific Reports, 2022, 12(1): 1-10. [36] SELVARAJU R R, Cogswell M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 618-626. [37] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708. [38] MAO L, XIA Z, PAN L, et al. Deep learning for screening primary osteopenia and osteoporosis using spine radio-graphs and patient clinical covariates in a Chinese population[J]. Frontiers in Endocrinology, 2022, 13: 971877. [39] XUE L, QIN G, CHANG S, et al. Osteoporosis prediction in lumbar spine X-ray images using the multi-scale weighted fusion contextual transformer network[J]. Artificial Intelligence in Medicine, 2023: 102639. [40] LIU J, WANG J, RUAN W, et al. Diagnostic and gradation model of osteoporosis based on improved deep U-Net network[J]. Journal of Medical Systems, 2020, 44: 1-7. [41] ZHANG B, YU K, NING Z, et al. Deep learning of lumbar spine X-ray for osteopenia and osteoporosis screening: a multicenter retrospective cohort study[J]. Bone, 2020, 140: 115561. [42] NGUYEN T P, CHAE D S, PARK S J, et al. A novel approach for evaluating bone mineral density of hips based on Sobel gradient-based map of radiographs utilizing convolutional neural network[J]. Computers in Biology and Medicine, 2021, 132: 104298. [43] LEULIET T, MAXIM V, PEYRIN F, et al. Impact of the training loss in deep learning-based CT reconstruction of bone microarchitecture[J]. Medical Physics, 2022, 49(5): 2952-2964. [44] SATO Y, YAMAMOTO N, INAGAKI N, et al. Deep learning for bone mineral density and T-score prediction from chest X-rays: a multicenter study[J]. Biomedicines, 2022, 10(9): 2323. [45] DONG Q, LUO G, LANE N E, et al. Deep learning classification of spinal osteoporotic compression frac-tures on radiographs using an adaptation of the genant semiquantitative criteria[J]. Academic Radiology, 2022, 29(12): 1819-1832. [46] MU S, WANG J, GONG S. Application of medical imaging based on deep learning in the treatment of lumbar degenerative diseases and osteoporosis with bone cement screws[J]. Computational and Mathematical Methods in Medicine, 2021(15): 1-10. [47] YASAKA K, AKAI H, KUNIMATSU A, et al. Prediction of bone mineral density from computed tomography: application of deep learning with a convolutional neural network[J]. European Radiology, 2020, 30: 3549-3557. [48] HU X, ZHU Y, QIAN Y, et al. Prediction of subsequent osteoporotic vertebral compression fracture on CT radiography via deep learning[J]. View, 2022, 3(6): 20220012. [49] TANG C, ZHANG W, LI H, et al. CNN-based qualitative detection of bone mineral density via diagnostic CT slices for osteoporosis screening[J]. Osteoporosis International, 2021, 32: 971-979. [50] LIPTON Z C, BERKOWITZ J, ELKAN C. A critical review of recurrent neural networks for sequence learning[J]. arXiv:1506.00019, 2015. [51] SHAKER A S. Detection and segmentation of osteoporosis in human body using recurrent neural network[J]. International Journal of Advanced Science and Technology, 2020, 29(2): 1055-1066. [52] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. [53] TOMITA N, CHEUNG Y Y, HASSANPOUR S. Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans[J]. Computers in Biology and Medicine, 2018, 98: 8-15. [54] BAR A, WOLF L, AMITAI O B, et al. Compression fractures detection on CT[C]//Medical Imaging 2017: Computer-Aided Diagnosis, 2017: 1036-1043. [55] SUO Q, MA F, CANINO G, et al. An attention-based recurrent neural networks framework for health data analysis[C]//Symposium on Advanced Database Systems, 2018. [56] SUO Q, MA F, CANINO G, et al. A multi-task framework for monitoring health conditions via attention-based recurrent neural networks[C]//AMIA Annual Symposium Proceedings, 2017. [57] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507. [58] QADRI S F, AI D, HU G, et al. Automatic deep feature learning via patch-based deep belief network for vertebrae segmentation in CT images[J]. Applied Sciences, 2018, 9(1): 69. [59] SHANKAR N, SATHISH BABU S, VISWANATHAN C. Femur bone volumetric estimation for osteoporosis classification using optimization-based deep belief network in X-ray images[J]. The Computer Journal, 2019, 62(11): 1656-1670. [60] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems, 2014. [61] LIN Y J, CHUNG I F. Medical data augmentation using generative adversarial networks: X-ray image generation for transfer learning of hip fracture detection[C]//2019 International Conference on Technologies and Applications of Artificial Intelligence, 2019: 1-5. [62] YONG T H, YANG S, LEE S J, et al. QCBCT-NET for direct measurement of bone mineral density from quantitative cone-beam CT: a human skull phantom study[J]. Scientific Reports, 2021, 11(1): 15083. [63] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4): 640-651. [64] SEKUBOYINA A, KUKA?KA J, KIRSCHKE J S, et al. Attention-driven deep learning for pathological spine segmentation[C]//International Workshop on Computational Methods and Clinical Applications in Musculoskeletal Imaging, 2017: 108-119. [65] JIN L, YANG J, KUANG K, et al. Deep-learning-assisted detection and segmentation of rib fractures from CT scans: development and validation of FracNet[J]. EBioMedicine, 2020, 62: 103106. [66] LESSMANN N, VAN GINNEKEN B, DE JONG P A, et al. Iterative fully convolutional neural networks for automatic vertebra segmentation and identification[J]. Medical Image Analysis, 2019, 53: 142-155. [67] HUSSAIN D, NAQVI R A, LOH W K, et al. Deep learning in DXA image segmentation[J]. CMC Comput Mater Continua, 2021, 66(3): 2587-2598. [68] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention, 2015: 234-241. [69] FATHIMA S M N, TAMILSELVI R, BEHAM M P, et al. A deep learning approach on segmentation of bone for bmd measurement from dexa scan images[C]//2020 Sixth International Conference on Bio Signals, Images, and Instrumentation, 2020: 1-5. [70] SCHMIDT D, ULéN J, ENQVIST O, et al. Deep learning takes the pain out of back breaking work-automatic vertebral segmentation and attenuation measurement for osteoporosis[J]. Clinical Imaging, 2022, 81: 54-59. [71] ZHAO Y, ZHAO T, CHEN S, et al. Fully automated radiomic screening pipeline for osteoporosis and abnormal bone density with a deep learning-based segmentation using a short lumbar mDixon sequence[J]. Quantitative Imaging in Medicine and Surgery, 2022, 12(2): 1198. [72] FANG Y, LI W, CHEN X, et al. Opportunistic osteoporosis screening in multi-detector CT images using deep convolutional neural networks[J]. European Radiology, 2021, 31: 1831-1842. [73] SAEED M U, DIKAIOS N, DASTGIR A, et al. An automated deep learning approach for spine segmentation and vertebrae recognition using computed tomography images[J]. Diagnostics, 2023, 13(16): 2658. [74] CARON R, LONDONO I, SEOUD L, et al. Segmentation of trabecular bone microdamage in Xray microCT images using a two-step deep learning method[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 137: 105540. [75] YANG F, WENG X, MIAO Y, et al. Deep learning approach for automatic segmentation of ulna and radius in dual-energy X-ray imaging[J]. Insights into Imaging, 2021, 12(1): 1-9. [76] PAN Y, SHI D, WANG H, et al. Automatic opportunistic osteoporosis screening using low-dose chest computed tomography scans obtained for lung cancer screening[J]. European Radiology, 2020, 30: 4107-4116. [77] 黄贺瑄, 王晓燕, 顾正位, 等. 医学知识图谱构建技术及发展现状研究[J]. 计算机工程与应用, 2023, 59(13): 33-48. HUANG H X, WANG X Y, GU Z W, et al. Research on construction technology and development status of medical knowledge graph[J]. Computer Engineering and Applications, 2023, 59(13): 33-48. [78] 陶嘉雯, 余争平, 皮会丰. 浅析以ChatGPT为代表的人工智能对医学教育的影响[J]. 数理医药学杂志, 2023, 36(6): 475-480. TAO J W, YU Z P, PI H F. Impact of artificial intelligence on medical education represented by ChatGPT[J]. Journal of Mathematical Medicine and Pharmacology, 2023, 36(6): 475-480. [79] RAO A, KIM J, KAMINENI M, et al. Evaluating ChatGPT as an adjunct for radiologic decision-making[J]. medRxiv:2023.02.02.23285399.2020, 2023. [80] JOHNSON D, GOODMAN R, PATRINELY J, et al. Assessing the accuracy and reliability of AI-generated medical responses: an evaluation of the Chat-GPT model[EB/OL]. [2023-04-06]. https://www.researchsquare.com/article/rs-2566942/v1. [81] BENOIT J R A. ChatGPT for clinical vignette generation, revision, and evaluation[J]. medRxiv:2023.02.04.23285478, 2023. [82] 徐璐璐, 洪贇, 叶鹰. ChatGPT及GPT类技术的医学信息学应用前景探讨[J]. 情报理论与实践, 2023, 46(6): 38-42. XU L L, HONG Y, YE Y. Exploring the application prospect of ChatGPT and GPT type technology in medical informatics[J]. Theory and Practice of Intelligence, 2023, 46(6): 38-42. [83] 瞿星, 杨金铭, 陈滔, 等. ChatGPT对医学教育模式改变的思考[J]. 四川大学学报 (医学版) , 2023, 54(5): 937-940. QU X, YANG J M, CHEN T, et al. Reflections on the implications of the developments in ChatGPT for changes in medical education models [J]. Journal of Sichuan University(Medical Sciences) , 2023, 54(5): 937-940. [84] WANG S H. OpenAI—explain why some countries are excluded from ChatGPT[J]. Nature, 2023, 615(7950): 34. [85] BUBECK S, CHANDRASEKARAN V, ELDAN R, et al. Sparks of artificial general intelligence: early experiments with GPT-4[J]. arXiv:2303.12712, 2023. [86] NORI H, KING N, MCKINNEY S M, et al. Capabilities of GPT-4 on medical challenge problems[J]. arXiv:2303.13375,2023. [87] 卢经纬, 郭超, 戴星原, 等. 问答ChatGPT之后: 超大预训练模型的机遇和挑战[J]. 自动化学报, 2023, 49(4): 705-717. LU J W, GUO C, DAI X Y, et al. The ChatGPT after: opportunities and challenges of very large scale pre-trained models[J]. Acta Automatica Sinica, 2023, 49(4): 705-717. [88] 李克文, 于明洋. 基于双重注意力机制改进的DA-LSTM时间序列预测模型[J]. 计算机应用与软件, 2023, 40(2): 253-258. LI K W, YU M Y. An improved DA-LSTM time series prediction model based on dual attention mechanism[J]. Computer Applications and Software, 2023, 40(2): 253-258. [89] HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. arXiv:1207.0580, 2012. [90] WAN L, ZEILER M, ZHANG S, et al. Regularization of neural networks using DropConnect[C]//International Conference on Machine Learning, 2013: 1058-1066. [91] GOODFELLOW I, WARDE-FARLEY D, MIRZA M, et al. Maxout networks[C]//International Conference on Machine Learning, 2013: 1319-1327. [92] 苗教伟, 季怡, 刘纯平. 基于视觉特征引导融合的视频描述方法[J]. 计算机工程与应用, 2022, 58(20): 124-131. MIAO J W, JI Y, LIU C P. Video captioning method based on visual feature guided fusion[J]. Computer Engineering and Applications, 2022, 58(20): 124-131. [93] 梁华刚, 雷毅雄. 增强可分离卷积通道特征的表情识别研究[J]. 计算机工程与应用, 2022, 58(2): 184-192. LIANG H G, LEI Y X. Expression recognition with separable convolution channel enhancement features[J]. Computer Engineering and Applications, 2022, 58(2): 184-192. [94] 微软研究院, 微软研究院公布GPT-4全面测试结果[N]. 传媒, 2023(7): 7. MICROSOFT R. Microsoft research announces the full test results of GPT-4[N]. Media, 2023(7): 7. [95] ZHANG J, SUN K, JAGADEESH A, et al. The potential and pitfalls of using a large language model such as ChatGPT or GPT-4 as a clinical assistant[J]. arXiv:2307.08152, 2023. |
[1] | DENG Xiquan, CHEN Gang. ConvUCaps: Medical Image Segmentation Model Based on Convolutional Capsule Network [J]. Computer Engineering and Applications, 2024, 60(8): 258-266. |
[2] | ZHOU Dingwei, HU Jing, ZHANG Liangrui, DUAN Feiya. Collaborative Correction Technology of Label Omission in Dataset for Object Detection [J]. Computer Engineering and Applications, 2024, 60(8): 267-273. |
[3] | ZHOU Bojun, CHEN Zhiyu. Survey of Few-Shot Image Classification Based on Deep Meta-Learning [J]. Computer Engineering and Applications, 2024, 60(8): 1-15. |
[4] | SUN Shilei, LI Ming, LIU Jing, MA Jingang, CHEN Tianzhen. Research Progress on Deep Learning in Field of Diabetic Retinopathy Classification [J]. Computer Engineering and Applications, 2024, 60(8): 16-30. |
[5] | WANG Weitai, WANG Xiaoqiang, LI Leixiao, TAO Yihao, LIN Hao. Review of Construction and Applications of Spatio-Temporal Graph Neural Network in Traffic Flow Prediction [J]. Computer Engineering and Applications, 2024, 60(8): 31-45. |
[6] | XIE Weiyu, ZHANG Qiang. Review on Detection of Drones and Birds in Photoelectric Images Based on Deep Learning Convolutional Neural Network [J]. Computer Engineering and Applications, 2024, 60(8): 46-55. |
[7] | CHANG Xilong, LIANG Kun, LI Wentao. Review of Development of Deep Learning Optimizer [J]. Computer Engineering and Applications, 2024, 60(7): 1-12. |
[8] | ZHOU Yutong, MA Zhiqiang, XU Biqi, JIA Wenchao, LYU Kai, LIU Jia. Survey of Deep Learning-Based on Emotion Generation in Conversation [J]. Computer Engineering and Applications, 2024, 60(7): 13-25. |
[9] | LIU Jianhua, WANG Nan, BAI Mingchen. Progress of Instantiated Reality Augmentation Method for Smart Phone Indoor Scene Elements [J]. Computer Engineering and Applications, 2024, 60(7): 58-69. |
[10] | HAO Zhifeng, LIU Jun, WEN Wen, CAI Ruichu. Temporal Event Prediction Based on Implicit Relationship of Multiple Sequences [J]. Computer Engineering and Applications, 2024, 60(7): 119-127. |
[11] | WANG Lei, YANG Jun, ZHANG Chiyu, DAI Zaiyan. Generative Adversarial Network with Dual Discriminator and Mixed Attention [J]. Computer Engineering and Applications, 2024, 60(7): 212-221. |
[12] | YUAN Jing, PAN Su, XIE Hao, XU Wenpeng. Stock Price Prediction Integrating Investor Sentiment Based on S_AM_BiLSTM Model [J]. Computer Engineering and Applications, 2024, 60(7): 274-281. |
[13] | TAN Zhenlin, LIU Ziliang, HUANG Aiquan, CHEN Huihui, ZHONG Yong. Review of Deep Learning Methods for Palm Vein Recognition [J]. Computer Engineering and Applications, 2024, 60(6): 55-67. |
[14] | LAI Jing’an, CHEN Ziqiang, SUN Zongwei, PEI Qingqi. Lightweight Foggy Weather Object Detection Method Based on YOLOv5 [J]. Computer Engineering and Applications, 2024, 60(6): 78-88. |
[15] | FENG Xinxin, GAO Shu. Hand Pose Estimation Based on Multi-Feature Enhancement [J]. Computer Engineering and Applications, 2024, 60(6): 207-213. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||