Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (6): 55-67.DOI: 10.3778/j.issn.1002-8331.2306-0168
• Research Hotspots and Reviews • Previous Articles Next Articles
TAN Zhenlin, LIU Ziliang, HUANG Aiquan, CHEN Huihui, ZHONG Yong
Online:
2024-03-15
Published:
2024-03-15
谭振林,刘子良,黄蔼权,陈荟慧,钟勇
TAN Zhenlin, LIU Ziliang, HUANG Aiquan, CHEN Huihui, ZHONG Yong. Review of Deep Learning Methods for Palm Vein Recognition[J]. Computer Engineering and Applications, 2024, 60(6): 55-67.
谭振林, 刘子良, 黄蔼权, 陈荟慧, 钟勇. 掌静脉识别的深度学习方法综述[J]. 计算机工程与应用, 2024, 60(6): 55-67.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2306-0168
[1] MINAEE S, ABDOLRASHIDI A, SU H, et al. Biometrics recognition using deep learning: a survey[J].arXiv:1912. 00271, 2019. [2] MACGREGOR P, WELFORD R. Veincheck imaging forsecurity[EB/OL].(1991).http: //www.scrip.org/journal/atricles.aspx. [3] HASSAN N F, ABDULRAZZAQ H I. Pose invariant palm vein identification system using convolutional neural network[J]. Baghdad Science Journal, 2018, 15(4): 503-510. [4] ZHONG D X, SHAO H K, DU X F. A hand-based multi-biometrics via deep hashing network and biometric graph matching[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(12): 3140-3150. [5] HORNG S J, VU D T, NGUYEN T V, et al. Recognizing palm vein in smartphones using RGB images[J]. IEEE Transactions on Industrial Informatics, 2022, 18(9): 5992-6002. [6] SALAZAR-JURADO E H, HERNANDEZ-GARCIA R, VILCHES-PONCE K, et al. Towards the generation of synthetic images of palm vein patterns: a review[J]. arXiv:2205. 10179, 2022. [7] JIA W, XIA W, ZHANG B, et al. A survey on dorsal hand vein biometrics[J]. Pattern Recognition, 2021, 120: 108-122. [8] 钟德星, 朱劲松, 杜学峰. 掌纹识别研究进展综述[J]. 模式识别与人工智能, 2019, 32(5): 436-445. ZHONG D X, ZHU J S, DU X F. Progress of palmprint recognition: a review[J]. Pattern Recognition and Artificial Intelligence, 2019, 32(5): 436-445. [9] 孙哲南, 赫然, 王亮, 等. 生物特征识别学科发展报告[J]. 中国图象图形学报, 2021, 26(6): 1254-1329. SUN Z N, HE R, WANG L, et al. Overview of biometrics research[J].Journal of Image and Graphics, 2021, 26(6): 1254-1329. [10] HAO Y, SUN Z N, TAN T N, et al. Multispectral palm image fusion for accurate contact-free palmprint recognition[C]//Proceedings of IEEE International Conference on Image Processing, 2008: 281-284. [11] TOME P, MARCEL S. On the vulnerability of palm vein recognition to spoofing attacks[C]//Proceedings of International Conference on Biometrics, 2015: 319-325. [12] ZHANG D, GUO Z H, LU G M, et al. An online system of multispectral palmprint verification[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(2): 480-490. [13] KABACINSKI R, KOWALSKI M. Vein pattern database and benchmark results[J]. Electronics Letters, 2011, 47(20): 1127. [14] ZHANG L, CHENG Z X, SHEN Y, et al. Palmprint and palmvein recognition based on DCNN and a new large-Scale contactless palmvein dataset[J]. Symmetry, 2018, 10(4): 78. [15] TOYGAR O, BABALOLA F O, BITIRIM Y. FYO: a novel multimodal vein database with palmar, dorsal and wrist biometrics[J]. IEEE Access, 2020, 8: 82461-82470. [16] WU W, WANG Q, YU S Q, et al. Outside box and contactless palm vein recognition based on a wavelet denoising ResNet[J]. IEEE Access, 2021, 9: 82471-82484. [17] JHINN W L, MICHAEL G K O, CONNIE T, et al. Preliminary work on rotation-invariant algorithms for contactless palm vein biometrics[C]//Proceedings of the International Conference on Information and Communication Technology (ICoICT), 2015: 568-573. [18] MICHAEL G K O, CONNIE T, TEOH BENG JIN A. An innovative contactless palm print and knuckle print recognition system[J]. Pattern Recognition Letters, 2010, 31(12): 1708-1719. [19] OUESLATI A, FEDDAOUI N, BELGHITH S, et al. An efficient palm vein region of interest extraction method[C]//Proceedings of the 5th International Conference on Advanced Technologies for Signal and Image Processing, 2020: 1-7. [20] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1): 62-66. [21] ONG MICHAEL G K, CONNIE T, JIN TEOH A B. Touch-less palm print biometrics: novel design and implementation[J]. Image and Vision Computing, 2008, 26(12): 1551-1560. [22] LIN S, XU T Y, YIN X Y. Region of interest extraction for palmprint and palm vein recognition[C]//Proceedings the 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics, 2016: 538-542. [23] CHEN Y Y, HSIA C H, CHEN P H. Contactless multispectral palm-vein recognition with lightweight convolutional neural network[J]. IEEE Access, 2021, 9: 149796-149806. [24] SUN X W, XU Q S, WANG C Y, et al. ROI extraction for online touchless palm vein based on concavity analysis[C]//Proceedings of the 32nd Youth Academic Annual Conference of Chinese Association of Automation, 2017: 1123-1126. [25] ITO K, SATO T, AOYAMA S, et al. Palm region extraction for contactless palmprint recognition[C]//Proceedings of International Conference on Biometrics, 2015: 334-340. [26] AYKUT M, EKINCI M. AAM-based palm segmentation in unrestricted backgrounds and various postures for palmprint recognition[J]. Pattern Recognition Letters, 2013, 34(9): 955-962. [27] 吴凯, 沈文忠, 贾丁丁, 等.融合Transformer和CNN的手掌静脉识别网络[J].计算机工程与应用, ?2023, 59(24): 98-109. WU K, SHEN W Z, JIA D D, et al. Palm vein recognition network combining Transformer and CNN[J]. Computer Engineering and Applications, 2023, 59(24): 98-109. [28] ZHANG K, ZHANG Z, LI Z, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters, 2016, 23(10): 1499-1503. [29] FARHAIDA MOHD ZAINON N A, RAZAK S A. Region of Interest extraction for biometric cryptosystem[C]//Proceedings of the IEEE Conference on Application, Information and Network Security, 2018: 33-37. [30] 刘刚, 张晶, 李月龙. 基于最大内切圆算法的手掌静脉ROI提取[J]. 计算机科学, 2018, 45(8): 264-267. LIU G, ZHANG J, LI Y L. Extraction of palm vein ROI based on maximum inscribed circle algorithm[J]. Computer Science, 2018, 45(8): 264-267. [31] PENG M, WANG C Y, CHEN T, et al. A methodology for palm vein image enhancement and visualization[C]//Proceedings of the IEEE International Conference of Online Analysis and Computing Science, 2016: 57-60. [32] GURUNATHAN V, BHARATHI S, SUDHAKAR R. Image enhancement techniques for palm vein images[C]//Proceedings of the International Conference on Advanced Computing and Communication Systems, 2015: 1-5. [33] PERERA K, KHELIFI F, BELATRECHE A. A novel image enhancement method for palm vein images[C]//Proceedings of the 8th International Conference on Control, Decision and Information Technologies, 2022: 1467-1472. [34] 娄梦莹, 袁丽莎, 刘娅琴, 等.基于自适应融合的手掌静脉增强方法[J].计算机应用, 2019, 39(4): 1176-1182. LOU M Y, YUAN L S, LIU Y Q, et al. Palm vein enhancement method based on adaptive fusion[J].Journal of Computer Applications, 2019, 39(4): 1176-1182. [35] HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2341-2353. [36] JOUNG-YOUN K, LEE-SUP K, SEUNG-HO H. An advanced contrast enhancement using partially overlapped sub-block histogram equalization[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2001, 11(4): 475-484. [37] OJALA T, PIETIKAINEN M, HARWOOD D. Performance evaluation of texture measures with classification based on Kullback discrimination of distributions[C]//Proceedings of 12th International Conference on Pattern Recognition, 1994: 582-585. [38] LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999: 1150-1157. [39] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2005: 886-893. [40] PAN Z Y, WANG J, SHEN Z W, et al. Multi-layer convolutional features concatenation with semantic feature selector for vein recognition[J]. IEEE Access, 2019, 7: 90608-90619. [41] WANG G, SUN C, SOWMYA A. Multi-weighted co-occurrence descriptor encoding for vein recognition[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 375-390. [42] WANG J, PAN Z, WANG G, et al. Spatial pyramid pooling of selective convolutional features for vein recognition[J]. IEEE Access, 2018, 6: 28563-28572. [43] QIN H F, EL YACOUBI M A, LIN J H, et al. An iterative deep neural network for hand-vein verification[J]. IEEE Access, 2019, 7: 34823-34837. [44] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. [45] THAPAR D, JASWAL G, NIGAM A, et al. PVSNet: palm vein authentication siamese network trained using triplet loss and adaptive hard mining by learning enforced domain specific features[C]//Proceedings of the 2019 IEEE 5th International Conference on Identity, Security, and Behavior Analysis (ISBA), 2019: 1-8. [46] KUZU R S, MAIORANA E, CAMPISI P. Vein-based biometric verification using densely-connected convolutional autoencoder[J]. IEEE Signal Processing Letters, 2020, 27: 1869-1873. [47] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: 770-778. [48] WU T F, LENG L, KHAN M K, et al. Palmprint-palmvein fusion recognition based on deep hashing network[J]. IEEE Access, 2021, 9: 135816-135827. [49] JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial Transformer networks[J].arXiv:1506.02025, 2015. [50] 娄梦莹, 王天景, 刘娅琴, 等.基于侧链连接卷积神经网络的手掌静脉图像识别[J].计算机应用, 2020, 40(12): 3673-3678. LOU M Y, WANG T J, LIU Y Q, et al. Palm vein image recognition based on side chain connected convolution neural network[J].Journal of Computer Applications, 2020, 40(12): 3673-3678. [51] HUANG G, LIU Z, WEINBERGER K Q. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2016: 2261-2269. [52] HTET A S M, LEE H J. Contactless palm vein recognition based on attention-gated residual U-Net and ECA-ResNet[J]. Applied Sciences, 2023, 13(11): 6363. [53] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[J]. arXiv:1505.04597, 2015. [54] QIN H F, EL-YACOUBI M A, LI Y T, et al. Multi-scale and multi-direction GAN for CNN-based single palm-vein identification[J].IEEE Transactions on Information Forensics and Security, 2021, 16: 2652-2666. [55] JIA W, XIA W, ZHAO Y, et al. 2D and 3D palmprint and palm vein recognition based on neural architecture search[J]. International Journal of Automation and Computing, 2021, 18(3): 377-409. [56] ZOPH B, LE Q V. Neural architecture search with reinforcement learning[J]. arXiv:1611.01578, 2016. [57] OBAYYA M I, EL-GHANDOUR M, ALROWAIS F. Contactless palm vein authentication using deep learning with bayesian optimization[J].IEEE Access, 2021, 9: 1940-1957. [58] LI Y T, RUAN S, QIN H F, et al. Transformer based defense GAN against palm-vein adversarial attacks[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 1509-1523. [59] QIN H F, GONG C Q, LI Y, et al. Label enhancement-based multiscale Transformer for palm-vein recognition[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-17. [60] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929, 2020. [61] LI Y P, LU H M, WANG Y F, et al. ViT-Cap: a novel vision Transformer-based capsule network model for finger vein recognition[J]. Applied Sciences-Basel, 2022, 12(20): 10364. [62] GARCIA-MARTIN R, SANCHEZ-REILLO R. Vision Transformers for vein biometric recognition[J]. IEEE Access, 2023, 11: 22060-22080. [63] 刘卫光, 刘东, 王璐. 可变形卷积网络研究综述[J].?计算机科学与探索, 2023, 17(7): 1549-1564. LIU W G, LIU D, WANG L. Survey of deformable convolutional networks[J].Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1549-1564. [64] JIA W, GAO J, XIA W, et al. A performance evaluation of classic convolutional neural networks for 2d and 3d palmprint and palm vein recognition[J]. International Journal of Automation and Computing, 2021, 18(1): 18-44. [65] TAN M, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[J]. arXiv:1905.11946, 2019. [66] HOWARD A, SANDLER M, CHU G, et al. Searching for MobileNetV3[J]. arXiv:1905.02244, 2019. [67] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520. [68] SUN S S, CONG X Y, ZHANG P, et al. Palm vein recognition based on NPE and KELM[J]. IEEE Access, 2021, 9: 71778-71783. [69] HUANG G B, ZHOU H M, DING X J, et al. Extreme learning machine for regression and multiclass classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2012, 42(2): 513-529. [70] ABED M H, ALI H A, ALI D, et al. Palm vein identification based on hybrid features selection model[J].?arXiv:2007.16195, 2020. [71] NAYAR G R, THOMAS T, EMMANUEL S. Graph based secure cancelable palm vein biometrics[J]. Journal of Information Security and Applications, 2021, 62: 102991. [72] AHMAD F, CHENG L M, KHAN A. lightweight and privacy-preserving template generation for palm-vein-based human recognition[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 184-194. [73] DEMANET L, YING L. Wave atoms and sparsity of oscillatory patterns[J]. Applied and Computational Harmonic Analysis, 2007, 23(3): 368-387. [74] 聂昊, 鲁玺龙, 郭文志, 等. 多模态生物特征识别技术的研究进展[J]. 生命科学仪器, 2020, 18(5): 20-28. NIE H, LU Y L, GUO W Z, et al. Research progress and prospects of multi-modal biometric identification technology[J]. Life Science Instrument, 2020, 18(5): 20-28. [75] ROSS A, JAIN A K. Information fusion in biometrics[J]. Pattern Recognition Letters, 2001, 24(13): 2115-2125. [76] CHEN P, DING B J, WANG H X, et al. Design of low-cost personal identification system that uses combined palm vein and palmprint biometric features[J]. IEEE Access, 2019, 7: 15922-15931. [77] MINAEE S, WANG Y. Fingerprint recognition using translation invariant scattering network[C]//Proceedings of the 2015 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), 2015: 1-6. [78] LI Z Q, LIANG X, FAN D D, et al. BPFNet: a unified framework for bimodal palmprint alignment and fusion[J]. arXiv:2110.01179, 2021. [79] WANG L, ZHANG Q, QIAN Q, et al. Multispectral palm print and palm vein acquisition platform and recognition method based on convolutional neural network[J]. The Computer Journal, 2022, 65(6): 1461-1471. [80] HUANG Y W, MA H, WANG M Y. Multimodal finger recognition based on asymmetric networks with fused similarity[J]. IEEE Access, 2023, 11: 17497-17509. [81] JIANG L, LIU X H, WANG H X, et al. Finger vein and inner knuckle print recognition based on multilevel feature fusion network[J]. Applied Sciences, 2022, 12(21): 11182. [82] KUANG H L, ZHONG Z H, LIU X H, et al. Palm vein recognition using convolution neural network based on feature fusion with HOG feature[C]//Proceedings of the 5th International Conference on Smart Grid and Electrical Automation (ICSGEA), 2020: 295-299. [83] BABALOLA F O, BITIRIM Y, TOYGAR ?. Palm vein recognition through fusion of texture-based and CNN-based methods[J]. Signal, Image and Video Processing, 2021, 15(3): 459-466. |
[1] | CHANG Xilong, LIANG Kun, LI Wentao. Review of Development of Deep Learning Optimizer [J]. Computer Engineering and Applications, 2024, 60(7): 1-12. |
[2] | ZHOU Yutong, MA Zhiqiang, XU Biqi, JIA Wenchao, LYU Kai, LIU Jia. Survey of Deep Learning-Based on Emotion Generation in Conversation [J]. Computer Engineering and Applications, 2024, 60(7): 13-25. |
[3] | JIANG Liang, ZHANG Cheng, WEI Dejian, CAO Hui, DU Yuzheng. Deep Learning in Aided Diagnosis of Osteoporosis [J]. Computer Engineering and Applications, 2024, 60(7): 26-40. |
[4] | LIU Jianhua, WANG Nan, BAI Mingchen. Progress of Instantiated Reality Augmentation Method for Smart Phone Indoor Scene Elements [J]. Computer Engineering and Applications, 2024, 60(7): 58-69. |
[5] | HAO Zhifeng, LIU Jun, WEN Wen, CAI Ruichu. Temporal Event Prediction Based on Implicit Relationship of Multiple Sequences [J]. Computer Engineering and Applications, 2024, 60(7): 119-127. |
[6] | YUAN Jing, PAN Su, XIE Hao, XU Wenpeng. Stock Price Prediction Integrating Investor Sentiment Based on S_AM_BiLSTM Model [J]. Computer Engineering and Applications, 2024, 60(7): 274-281. |
[7] | LAI Jing’an, CHEN Ziqiang, SUN Zongwei, PEI Qingqi. Lightweight Foggy Weather Object Detection Method Based on YOLOv5 [J]. Computer Engineering and Applications, 2024, 60(6): 78-88. |
[8] | RUAN Hui, HUANG Xixia, LI Dengfeng, WANG Le. Research on Fine-Grained Fault Diagnosis of Rolling Bearings [J]. Computer Engineering and Applications, 2024, 60(6): 312-322. |
[9] | SU Chenyang, WU Wenhong, NIU Hengmao, SHI Bao, HAO Xu, WANG Jiamin, GAO Le, WANG Weitai. Review of Deep Learning Approaches for Recognizing Multiple Unsafe Behaviors in Workers [J]. Computer Engineering and Applications, 2024, 60(5): 30-46. |
[10] | Abudukelimu Halidanmu, FENG Ke, SHI Yaqing, Abudukelimu Nihemaiti, Abulizi Abudukelimu. Review of Applications of Deep Learning in Fracture Diagnosis [J]. Computer Engineering and Applications, 2024, 60(5): 47-61. |
[11] | JIN Tao, JIN Ran, HOU Tengda, YUAN Jie, GU Xiaozhe. Review of Research on Multimodal Retrieval [J]. Computer Engineering and Applications, 2024, 60(5): 62-75. |
[12] | WANG Rong, DUANMU Chunjiang. Multi-Coupled Feedback Networks for Image Fusion and Super-Resolution Methods [J]. Computer Engineering and Applications, 2024, 60(5): 210-220. |
[13] | XIE Ruobing, LI Maojun, LI Yiwei, HU Jianwen. Improving YOLOX-s Dense Garbage Detection Method [J]. Computer Engineering and Applications, 2024, 60(5): 250-258. |
[14] | CHEN Lei, XI Yimeng, LIU Libo. Survey on Video-Text Cross-Modal Retrieval [J]. Computer Engineering and Applications, 2024, 60(4): 1-20. |
[15] | MA Hansheng, ZHU Yuhua, LI Zhihui, YAN Lei, SI Yiyi, LIAN Yimeng, ZHANG Yuhan. Survey of Neural Radiance Fields for Multi-View Synthesis Technologies [J]. Computer Engineering and Applications, 2024, 60(4): 21-38. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||