[1] 王后雄. “问题链”的类型及教学功能——以化学教学为例[J]. 教育科学研究, 2010(5): 50-54.
WANG H X. The type and teaching function of “problem chain”—talking chemistry teaching as an example[J]. Educational Science Research, 2010(5): 50-54.
[2] 王建强. 课堂问题链的设计、实践与思考[J]. 上海教育科研, 2015(4): 71-73.
WANG J Q. Design, practice and reflection on classroom question chain[J]. Shanghai Educational Research, 2015(4): 71-73.
[3] 庄颖, 栾庆芳. 初中平面几何教学“问题链”设计的策略研究——以“同位角、内错角、同旁内角”为例[J]. 理科考试研究, 2022, 29(24): 23-26.
ZHUANG Y, LUAN Q F. A strategy study on the design of “problem chain” in junior high school plane geometry teaching—taking “corresponding angles, alternate interior angles, and same-side interior angles” as an example[J]. Research on Science Examination, 2022, 29(24): 23-26.
[4] 孙丽娜. 基于问题链的数学动态生成教学[J]. 数学教学通讯, 2019(12): 60-61.
SUN L N. Mathematics dynamic generation teaching based on problem chain[J]. Mathematics Teaching Communication, 2019(12): 60-61.
[5] 杨平平. 英语阅读教学问题链设计存在的问句及其对策[J]. 教学与管理: 中学版, 2017(11): 3.
YANG P P. The questions and countermeasures of designing question chain in English reading teaching[J]. Teaching and Management: Secondary School Edition, 2017(11): 3.
[6] GAO Y, LI P, KING I, et al. Interconnected question generation with coreference alignment and conversation flow modeling[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, 2019: 4853-4862.
[7] QI P, ZHANG Y H, MANNING C D. Stay hungry, stay focused: generating informative and specific questions in information-seeking conversations[C]//Proceedings of the Empirical Methods in Natural Language Processing, 2020: 208-213.
[8] PAN B Y, LI H, YAO Z Y, et al. Reinforced dynamic reasoning for conversational question generation[C]//Proceedings of the Meeting of the Association for Computational Linguistics, 2019: 2114-2124.
[9] PANG W, WANG X J. Visual dialogue state tracking for question generation[C]//Proceedings of the National Conference on Artificial Intelligence, 2020: 11831-11838.
[10] 周鹏. 基于嵌入模型的知识图谱补全方法研究[D]. 西安: 西安电子科技大学, 2020.
ZHOU P. Research on knowledge graph completion method based on embedding model[D]. Xi’an: Xidian University, 2020.
[11] 杨大伟, 周刚, 卢记仓, 等. 基于知识表示学习的知识图谱补全研究综述[J]. 信息工程大学报, 2021, 22(5): 558-565.
YANG D W, ZHOU G, LU J C, et al. A survey of knowledge graph completion based on knowledge representation learning[J]. Journal of Information Engineering University, 2021, 22(5): 558-565.
[12] 文鹏. 基于卷积神经网络的知识图谱补全研究[D]. 重庆: 重庆大学, 2019.
WEN P. Research on knowledge graph completion based on convolutional neural network[D]. Chongqing: Chongqing University, 2019.
[13] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems, 2013: 2787-2795.
[14] WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2014: 1112-1119.
[15] JI G L, HE S Z, XU L H, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, 2015: 687-696.
[16] NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th International Conference on International Conference on Machine Learning, 2011: 809-816.
[17] KADLEC R, BAJGAR O, KLEINDIENST J. Knowledge base completion: baselines strike back[J]. arXiv:1705.10744, 2017.
[18] NICKEL M, ROSASCO L, POGGIO T. Holographic embeddings of knowledge graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2016: 1955-1961.
[19] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the International Conference on Machine Learning, 2016: 2071-2080.
[20] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the European Semantic Web Conference, 2018: 593-607.
[21] CAI L, YAN B, MAI G C, et al. TransGCN: coupling transformation assumptions with graph convolutional networks for link prediction[C]//Proceedings of the 10th International Conference on Knowledge Capture, 2019: 131-138.
[22] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2018: 1811-1818.
[23] NGUYEN D Q, NGUYEN T D, NGUYEN D Q, et al. A novel embedding model for knowledge base completion based on convolutional neural network[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2018: 327-333.
[24] 汪晓凤, 孙雨洁, 王华珍, 等. 融合深度学习和知识图谱的类型可控问句生成模型构建及验证[J]. 数据分析与知识发现, 2023, 7(6): 26-37.
WANG X F, SUN Y J, WANG H Z, et al. Construction and validation of a type-controllable question generation model based on the fusion of deep learning and knowledge graph[J]. Data Analysis and Knowledge Discovery, 2023, 7(6): 26-37.
[25] MCCARTHY B, HUDSON M G. About teaching: 4MAT in the classroom[M]. IL: Wauconda, 2000.
[26] 周菊香, 周明涛, 甘健侯, 等. 多阶段时序和语义信息增强的问题生成模型[J]. 计算机工程与科学, 2023, 45(10): 1847-1857.
ZHOU J X, ZHOU M T, GAN J H, et al. Problem generation model with multi-stage temporal and semantic information enhancement[J]. Computer Engineering and Science, 2023, 45(10): 1847-1857.
[27] 李亚峰, 叶东毅, 陈羽中. 用于问题生成的知识增强双图交互网络[J]. 小型微型计算机系统, 2024, 45(5): 1032-1038.
LI Y F, YE D Y, CHEN Y Z. Knowledge-enhanced dual-graph interaction network for question generation[J]. Journal of Chinese Mini-Micro Computer Systems, 2024, 45(5): 1032-1038. |