Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (20): 49-67.DOI: 10.3778/j.issn.1002-8331.2403-0308
• Research Hotspots and Reviews • Previous Articles Next Articles
ZHANG Qi, CHEN Xu, WANG Shuyang, JING Yongjun, SONG Jifei
Online:
2024-10-15
Published:
2024-10-15
张其,陈旭,王叔洋,景永俊,宋吉飞
ZHANG Qi, CHEN Xu, WANG Shuyang, JING Yongjun, SONG Jifei. Survey of Dynamic Graph Neural Network for Link Prediction[J]. Computer Engineering and Applications, 2024, 60(20): 49-67.
张其, 陈旭, 王叔洋, 景永俊, 宋吉飞. 动态图神经网络链接预测综述[J]. 计算机工程与应用, 2024, 60(20): 49-67.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2403-0308
[1] BRONSTEIN M, BRUNA J, COHEN T, et al. Geometric deep learning: grids, groups, graphs, geodesics, and gauges[J]. arXiv:2104.13478, 2021. [2] LIU Y, SHI X L, PIERCE L, et al. Characterizing and forecasting user engagement with in-app action graph: a case study of snapchat[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019: 2023-2031. [3] FOUT A, BYRD J, SHARIAT B, et al. Protein interface prediction using graph convolutional networks[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6533-6542. [4] CHAMI I, YING Z, Ré C, et al. Hyperbolic graph convolutional neural networks[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems, 2019: 4868-4879. [5] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2008, 20(1): 61-80. [6] PANG J, JIA L, DENG J. A survey on dynamic graph neural networks modeling[C]//Proceedings of the 2022 China Automation Congress, 2022: 2476-2481. [7] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016. [8] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv:1710.10903, 2017. [9] HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graph[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 1025-1035. [10] CHEN J, MA T, XIAO C. FastGCN: fast learning with graph convolutional networks via importance sampling[J]. arXiv:1801.10247, 2018. [11] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the 15th Extended Semantic Web Conference, 2018: 593-607. [12] TAI K S, SOCHER R, MANNING C D. Improved semantic representations from tree-structured long short-term memory networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, 2015: 1556-1566. [13] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010. [14] SKARDING J, GABRYS B, MUSIAL K. Foundations and modelling of dynamic net-works using dynamic graph neural networks: a survey[J]. IEEE Access, 2021, 9: 79143-79168. [15] YANG L, CHATELAIN C, ADAM S. Dynamic graph representation learning with neural networks: a survey[J]. IEEE Access, 2024, 12: 43460-43484. [16] LONGA A, LACHI V, SANTIN G, et al. Graph neural networks for temporal graphs: state of the art, open challenges, and opportunities[J]. arXiv:2302.01018, 2023. [17] ZHU Y, LYU F, HU C, et al. Encoder-decoder architecture for supervised dynamic graph learning: a survey[J]. arXiv:2203.10480, 2022. [18] ZHENG Y, YI L, WEI Z. A survey of dynamic graph neural networks[J]. arXiv:2404.18211, 2024. [19] SKARDING J, HELLMICH M, GABRYS B, et al. A robust comparative analysis of graph neural networks on dynamic link prediction[J]. IEEE Access, 2022, 10: 64146-64160. [20] FENG Z, LIU L, SHU J, et al. A survey of dynamic network link prediction[C]//Proceedings of the 2023 15th International Conference on Communication Software and Networks, 2023: 143-147. [21] SANDRYHAILA A, MOURA J M F. Discrete signal processing on graphs: graph fourier transform[C]//Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, 2013: 6167-6170. [22] ZHOU J, CUI G, HU S, et al. Graph neural networks: a review of methods and applications[J]. AI Open, 2020, 1: 57-81. [23] GORI M, MONFARDINI G, SCARSELLI F. A new model for learning in graph domains[C]//Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, 2005: 729-734. [24] MICHELI A. Neural network for graphs: a contextual constructive approach[J]. IEEE Transactions on Neural Networks, 2009, 20(3): 498-511. [25] BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[J]. arXiv:1312.6203, 2013. [26] GILMER J, SCHOENHOLZ S, RILEY P F, et al. Neural message passing for quantum chemistry[C]//Proceedings of the International Conference on Machine Learning, 2017: 1263-1272. [27] REHMAN A, AHMAD M, KHAN O. Exploring accelerator and parallel graph algorithmic choices for temporal graphs[C]//Proceedings of the 11th International Workshop on Programming Models and Applications for Multicores and Manycores, 2020: 1-10. [28] HOLME P, SARAM?KI J. Temporal networks[J]. Physics Reports, 2012, 519(3): 97-125. [29] HOLME P. Modern temporal network theory: a colloquium[J]. The European Physical Journal B, 2015, 88(9): 234. [30] LI J, WANG P, LI H, et al. Enhanced time-expanded graph for space information network modeling[J]. Science China Information Sciences, 2022, 65(9): 192301. [31] AZIMIFAR M, TODD T D, KHEZRIAN A, et al. Vehicle-to-vehicle forwarding in green roadside infrastructure[J]. IEEE Transactions on Vehicular Technology, 2016, 65(2): 780-795. [32] MICHAIL O. An introduction to temporal graphs: an algorithmic perspective[J]. Internet Mathematics, 2016, 12(4): 239-280. [33] QU L, ZHU H S, DUAN Q Q, et al. Continuous-time link prediction via temporal dependent graph neural network[C]//Proceedings of the Web Conference 2020, 2020: 3026-3032. [34] KIPF T N, WELLING M. Variational graph auto-encoders[J]. arXiv:1611.07308, 2016. [35] SEO Y, DEFFERRARD M, VANDERGHEYNST P, et al. Structured sequence modeling with graph convolutional recurrent networks[C]//Proceedings of the 25th International Conference on Neural Information Processing, 2018: 362-373. [36] MANESSI F, ROZZA A, MANZO M. Dynamic graph convolutional networks[J]. Pattern Recognition, 2020, 97: 107000. [37] GRAVES A. Long short-term memory[J]. Supervised Sequence Labelling with Recurrent Neural Networks, 2012, 385: 37-45. [38] WANG Y, LI P, BAI C, et al. TEDIC: neural modeling of behavioral patterns in dynamic social interaction net-works[C]//Proceedings of the Web Conference 2021, 2021: 693-705. [39] CAI L, CHEN Z, LUO C, et al. Structural temporal graph neural networks for anomaly detection in dynamic graphs[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021: 3747-3756. [40] ZHOU F, XU X, LI C, et al. A heterogeneous dynamical graph neural networks approach to quantify scientific impact[J]. arXiv:2003.12042, 2020. [41] BAI S, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[J]. arXiv:1803.01271, 2018. [42] CHO K, MERRIENBOER V B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv:1406.1078, 2014. [43] NARAYAN A, O’N ROE P H. Learning graph dynamics using deep neural networks[J]. IFAC-PapersOnLine, 2018, 51(2): 433-438. [44] NIEPERT M, AHMED M, KUTZKOV K. Learning convolutional neural networks for graphs[C]//Proceedings of the International Conference on Machine Learning, 2016: 2014-2023. [45] WU J, CAO M, CHEUNG J C K, et al. TeMP: temporal message passing for temporal knowledge graph completion[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, 2020: 5730-5746. [46] KING I J, HUANG H. EULER: detecting network lateral movement via scalable temporal link prediction[J]. ACM Transactions on Privacy and Security, 2023, 26(3): 1-36. [47] SHI X, CHEN Z, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems, 2015: 802-810. [48] PAREJA A, DOMENICONI G, CHEN J, et al. EvolveGCN: evolving graph convolutional networks for dynamic graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 5363-5370. [49] CHEN J, WANG X, XU X. GC-LSTM: graph convolution embedded LSTM for dynamic network link prediction[J]. Applied Intelligence, 2022, 52(7): 7513-7528. [50] LI J, HAN Z, CHENG H, et al. Predicting path failure in time-evolving graphs[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019: 1279-1289. [51] JIN W, QU M, JIN X, et al. Recurrent event network: autoregressive structure inference over temporal knowledge graphs[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, 2020: 6669-6683. [52] BONNER S, ATAPOUR-ABARGHOUEI A, JACKSON P T, et al. Temporal neighbourhood aggregation: predicting future links in temporal graphs via re-current variational graph convolutions[C]//Proceedings of the 2019 IEEE International Conference on Big Data, 2019: 5336-5345. [53] XU J, SUN X, ZHANG Z, et al. Understanding and improving layer normalization[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems, 2019: 4381-4391. [54] BAI L, YAO L, LI C. Adaptive graph convolutional recurrent network for traf?c forecasting[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020: 17804-17815. [55] NIKNAM G, MOLAEI S, ZARE H, et al. DyVGRNN: dynamic mixture variational graph recurrent neural networks[J]. Neural Networks, 2023, 165: 596-610. [56] QIN X, SHEIKH N, LEI C, et al. SEIGN: a simple and efficient graph neural network for large dynamic graphs[C]//Proceedings of the IEEE 39th International Conference on Data Engineering, 2023: 2850-2863. [57] MIRZA M, OSINDERO S. Conditional generative adversarial nets[J]. arXiv:1411.1784, 2014. [58] LEI K, QIN M, BAI B, et al. GCN-GAN: a non-linear temporal link prediction model for weighted dynamic networks[C]//Proceedings of the 2019 IEEE Conference on Computer Communications, 2019: 388-396. [59] MAHESHWARI A, GOYAL A, HANAWAL M K, et al. DynGAN: generative adversarial networks for dynamic network embedding[C]//Proceedings of the Graph Representation Learning Workshop at NeurIPS, 2019. [60] YANG M, ZHOU M, KALANDER M, et al. Discrete-time temporal network embedding via implicit hierarchical learning in hyperbolic space[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021: 1975-1985. [61] YANG M, ZHOU M, XIONG H, et al. Hyperbolic temporal network embedding[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(11): 11489-11502. [62] NICKEL M. Poincaré embeddings for learning hierarchical representations[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6341-6350. [63] BAI Q, NIE C, ZHANG H, et al. HGWaveNet: a hyperbolic graph neural network for temporal link prediction[C]//Proceedings of the ACM Web Conference 2023, 2023: 523-532. [64] OORD V D A, DIELEMAN S, ZEN H, et al. WaveNet: a generative model for raw audio[J]. arXiv:1609.03499, 2016. [65] WU Z, PAN S, LONG G, et al. Graph WaveNet for deep spatial-temporal graph modeling[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019: 1907-1913. [66] LI H, JIANG H, YE D, et al. DHGAT: hyperbolic representation learning on dynamic graphs via attention networks[J]. Neurocomputing, 2024, 568: 127038. [67] ORESHKIN B N, CARPOV D, CHAPADOS N, et al. Meta-learning framework with applications to zero-shot time-series forecasting[J]. arXiv:2002.02887, 2020. [68] ORESHKIN B N, CARPOV D, CHAPADOS N, et al. N-BEATS: neural basis expansion analysis for interpretable time series forecasting[J]. arXiv:1905.10437, 2019. [69] YANG C, WANG C, LU Y, et al. Few-shot link prediction in dynamic networks[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining, 2022: 1245-1255. [70] YOU J, DU T, LESKOVEC J. ROLAND: graph learning framework for dynamic graphs[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022: 2358-2366. [71] ZHU Y, CONG F, ZHANG D, et al. WinGNN: dynamic graph neural networks with random gradient aggregation window[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023: 3650-3662. [72] LIU M, WU J, LIU Y. Embedding global and local influences for dynamic graphs[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management, 2022: 4249-4253. [73] SHI M, HUANG Y, ZHU X, et al. GAEN: graph attention evolving networks[C]//Proceedings of the 13th International Joint Conference on Artificial Intelligence, 2021: 1541-1547. [74] ZANG X, TANG B. Self-supervised dynamic graph embedding with evolutionary neighborhood and community[J]. Expert Systems with Applications, 2023, 228: 120409. [75] TIAN S, XIONG T, SHI L. Streaming dynamic graph neural networks for continuous-time temporal graph modeling[C]//Proceedings of the 2021 IEEE International Conference on Data Mining, 2021: 1361-1366. [76] KUMAR S, ZHANG X, LESKOVEC J. Predicting dynamic embedding trajectory in temporal interaction networks[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019: 1269-1278. [77] TRIVEDI R, FARAJTABAR M, BISWAL P, et al. DyRep: learning representations over dynamic graphs[C]//Proceedings of the International Conference on Learning Representations, 2019. [78] KNYAZEV B, AUGUSTA C, TAYLOR G W. Learning temporal attention in dynamic graphs with bilinear interactions[J]. Plos One, 2021, 16(3): 0247936. [79] KIPF T, FETAYA E, WANG K C, et al. Neural relational inference for interacting systems[C]//Proceedings of the International Conference on Machine Learning, 2018: 2688-2697. [80] XIA W, LI Y, LI S. Graph neural point process for temporal interaction prediction[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(5): 4867-4879. [81] WEN Z, FANG Y. TREND: Temporal event and node dynamics for graph representation learning[C]//Proceedings of the ACM Web Conference 2022, 2022: 1159-1169. [82] TIAN S, WU R, SHI L, et al. Self-supervised representation learning on dynamic graphs[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management, 2021: 1814-1823. [83] JIANG L, CHEN K J, CHEN J. Self-supervised dynamic graph representation learning via temporal sub-graph contrast[J]. arXiv:2112.08733, 2021. [84] ALOMRANI M A, BIPARVA M, ZHANG Y, et al. DyG2Vec: representation learning for dynamic graphs with self-supervision[J]. arXiv:2210.16906, 2022. [85] LIU M, LIANG K, ZHAO Y, et al. Self-supervised temporal graph learning with temporal and structural intensity alignment[J]. arXiv:2302.07491, 2023. [86] XU D, RUAN C, KORPEOGLU E, et al. Inductive representation learning on temporal graphs[J]. arXiv:2002.07962, 2020. [87] YU L, SUN L, DU B, et al. Towards better dynamic graph learning: new architecture and unified library[C]//Proceedings of the 37th Conference on Neural Information Processing Systems, 2023. [88] NGUYEN G H, LEE J B, ROSSI R A, et al. Continuous-time dynamic network embeddings[C]//Proceedings of the Web Conference 2018, 2018: 969-976. [89] WANG Y, CHANG Y, LIU Y, et al. Inductive representation learning in temporal networks via causal anonymous walks[J]. arXiv:2101.05974, 2021. [90] JIN M, LI Y F, PAN S. Neural temporal walks: motif-aware representation learning on continuous-time dynamic graphs[C]//Advances in Neural Information Processing Systems, 2022: 19874-19886. [91] LI H, CHEN L. EARLY: efficient and reliable graph neural network for dynamic graphs[J]. Proceedings of the ACM on Management of Data, 2023, 1(2): 1-28. [92] LI Y, SHEN Y, CHEN L, et al. Zebra: when temporal graph neural networks meet temporal personalized pagerank[J]. Proceedings of the VLDB Endowment, 2023, 16(6): 1332-1345. [93] ROMERO R, BIE D T, LIJFFIJT J. New perspectives on the evaluation of link prediction algorithms for dynamic graphs[J]. arXiv:2311.18486, 2023. [94] SHETTY J, ADIBI J. The enron email dataset[R]. Los Angeles: University of Southern California, 2004. [95] PANZARASA P, OPSAHL T, CARLEY K M. Patterns and dynamics of users’ behavior and interaction: network analysis of an online community[J]. Journal of the American Society for Information Science and Technology, 2009, 60(5): 911-932. [96] XIANG S, CHENG D, SHANG C, et al. Temporal and heterogeneous graph neural network for financial time series prediction[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management, 2022: 3584-3593. [97] HUANG L, MA Y, LIU Y, et al. Position-enhanced and time-aware graph convolutional network for sequential recommendations[J]. ACM Transactions on Information Systems, 2023, 41(1): 1-32. [98] LIU C, LI Y, LIN H, et al. GNNRec: gated graph neural network for session-based social recommendation model[J]. Journal of Intelligent Information Systems, 2022, 60(1): 137-156. [99] ZHANG M, WU S, YU X, et al. Dynamic graph neural networks for sequential recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(5): 4741-4753. [100] WAN S, WU Y, LIU Y, et al. A recommendation approach based on heterogeneous network and dynamic knowledge graph[J]. International Journal of Intelligent Systems, 2024, 2024: 1-19. [101] HAN Z, MA Y, WANG Y, et al. Graph Hawkes neural network for forecasting on temporal knowledge graphs[J]. arXiv:2003.13432, 2020. [102] XIONG S, YANG Y, PAYANI A, et al. TEILP: time prediction over knowledge graphs via logical reasoning[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2024: 16112-16119. [103] HE Y, ZHANG P, LIU L, et al. HIP network: historical information passing network for extrapolation reasoning on temporal knowledge graph[C]//Proceedings of the 13th International Joint Conference on Artificial Intelligence, 2021: 1915-1921. [104] PAN J, NAYYERI M, LI Y, et al. HGE: embedding temporal knowledge graphs in a product space of heterogeneous geometric subspaces[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2024: 8913-8920. [105] XU H, BAO J, LI H, et al. A multi-view temporal knowledge graph reasoning framework with interpretable logic rules and feature fusion[J]. Electronics, 2024, 13(4): 742. [106] JOBE A, KY R, LUO S, et al. Power grid anomaly detection via hybrid LSTM-GIN model[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2024: 23525-23527. [107] ZHUANG W, JIANG W, XIA M, et al. Dynamic generative residual graph convolutional neural networks for electricity theft detection[J]. IEEE Access, 2024, 12: 42737-42750. [108] HAO X, CHEN Y, YANG C, et al. From chaos to clarity: time series anomaly detection in astronomical observations[J]. arXiv:2403.10220, 2024. [109] REN Z, LI X, PENG J, et al. Graph autoencoder with mirror temporal convolutional networks for traffic anomaly detection[J]. Scientific Reports, 2024, 14(1): 1247. [110] LIU S, YAO D, FANG L, et al. AnomalyLLM: few-shot anomaly edge detection for dynamic graphs using large language models[J]. arXiv:2405.07626, 2024. [111] CHEN J, XIONG H, ZHENG H, et al. Dyn-Backdoor: backdoor attack on dynamic link prediction[J]. IEEE Transactions on Network Science and Engineering, 2021, 11: 525-542. [112] YUAN H, SUN Q, FU X, et al. Dynamic graph information bottleneck[J]. arXiv:2402.06716, 2024. [113] MASCI J, BOSCAINI D, BRONSTEIN M, et al. Geodesic convolutional neural networks on Riemannian manifolds[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops, 2015: 37-45. [114] VLASSIS N, SUN W. Geometric learning for computational mechanics Part II: graph embedding for interpretable multiscale plasticity[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 404: 115768. |
[1] | WANG Cailing, YAN Jingjing, ZHANG Zhidong. Review on Human Action Recognition Methods Based on Multimodal Data [J]. Computer Engineering and Applications, 2024, 60(9): 1-18. |
[2] | LIAN Lu, TIAN Qichuan, TAN Run, ZHANG Xiaohang. Research Progress of Image Style Transfer Based on Neural Network [J]. Computer Engineering and Applications, 2024, 60(9): 30-47. |
[3] | YANG Chenxi, ZHUANG Xufei, CHEN Junnan, LI Heng. Review of Research on Bus Travel Trajectory Prediction Based on Deep Learning [J]. Computer Engineering and Applications, 2024, 60(9): 65-78. |
[4] | ZHANG Junsan, XIAO Sen, GAO Hui, SHAO Mingwen, ZHANG Peiying, ZHU Jie. Multi-Task Graph Recommendation Algorithm Based on Neighborhood Sampling [J]. Computer Engineering and Applications, 2024, 60(9): 172-180. |
[5] | SONG Jianping, WANG Yi, SUN Kaiwei, LIU Qilie. Short Text Classification Combined with Hyperbolic Graph Attention Networks and Labels [J]. Computer Engineering and Applications, 2024, 60(9): 188-195. |
[6] | CHE Yunlong, YUAN Liang, SUN Lihui. 3D Object Detection Based on Strong Semantic Key Point Sampling [J]. Computer Engineering and Applications, 2024, 60(9): 254-260. |
[7] | QIU Yunfei, WANG Yifan. Multi-Level 3D Point Cloud Completion with Dual-Branch Structure [J]. Computer Engineering and Applications, 2024, 60(9): 272-282. |
[8] | YE Bin, ZHU Xingshuai, YAO Kang, DING Shangshang, FU Weiwei. Binocular Depth Measurement Method for Desktop Interaction Scene [J]. Computer Engineering and Applications, 2024, 60(9): 283-291. |
[9] | ZHOU Dingwei, HU Jing, ZHANG Liangrui, DUAN Feiya. Collaborative Correction Technology of Label Omission in Dataset for Object Detection [J]. Computer Engineering and Applications, 2024, 60(8): 267-273. |
[10] | ZHOU Bojun, CHEN Zhiyu. Survey of Few-Shot Image Classification Based on Deep Meta-Learning [J]. Computer Engineering and Applications, 2024, 60(8): 1-15. |
[11] | SUN Shilei, LI Ming, LIU Jing, MA Jingang, CHEN Tianzhen. Research Progress on Deep Learning in Field of Diabetic Retinopathy Classification [J]. Computer Engineering and Applications, 2024, 60(8): 16-30. |
[12] | WANG Weitai, WANG Xiaoqiang, LI Leixiao, TAO Yihao, LIN Hao. Review of Construction and Applications of Spatio-Temporal Graph Neural Network in Traffic Flow Prediction [J]. Computer Engineering and Applications, 2024, 60(8): 31-45. |
[13] | XIE Weiyu, ZHANG Qiang. Review on Detection of Drones and Birds in Photoelectric Images Based on Deep Learning Convolutional Neural Network [J]. Computer Engineering and Applications, 2024, 60(8): 46-55. |
[14] | ZHAO Bo, WANG Yujia, NI Ji. E-TUP:Joint Knowledge Graph Learning Recommendation Method Incorporating E-CP and TUP [J]. Computer Engineering and Applications, 2024, 60(8): 99-109. |
[15] | CHANG Xilong, LIANG Kun, LI Wentao. Review of Development of Deep Learning Optimizer [J]. Computer Engineering and Applications, 2024, 60(7): 1-12. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||