Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (22): 38-57.DOI: 10.3778/j.issn.1002-8331.2404-0331

• Research Hotspots and Reviews • Previous Articles     Next Articles

Survey on Temporal Knowledge Graph Completion Research

XU Kaijia, LIU Lin, WANG Hailong, LIU Jing   

  1. 1.School of Computer Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China
    2.Computer Science Joint Innovation Laboratory, Inner Mongolia Normal University, Hohhot 010022, China
    3.Library, Inner Mongolia University, Hohhot 010021, China
  • Online:2024-11-15 Published:2024-11-14

时序知识图谱补全研究综述

许凯嘉,柳林,王海龙,刘静   

  1. 1.内蒙古师范大学 计算机科学技术学院,呼和浩特 010022
    2.内蒙古师范大学 计算机科学联合创新实验室,呼和浩特 010022
    3.内蒙古大学 图书馆,呼和浩特 010021

Abstract: Currently, temporal knowledge graphs widely suffer from incompleteness, which severely restricts their application and development in downstream tasks. Temporal knowledge graph completion (TKGC) techniques aim to predict the missing links within these graphs to address the incompleteness issue. By incorporating the time dimension, TKGC seeks to capture temporal information, thus understanding how entities and relationships change over time, which helps in more accurately completing the temporal knowledge graph. This paper reviews the latest research advancements in TKGC based on different strategies for applying temporal information. Firstly, it provides a detailed explanation of the research background of TKGC, including problem definitions and key benchmark datasets. Secondly, it introduces and summarizes existing TKGC methods based on the proposed classification approach, and discusses the applications of TKGC in downstream tasks. Finally, this paper proposes current challenges and future research directions.

Key words: temporal knowledge graph, temporal knowledge graph completion (TKGC), knowledge graph embedding, link prediction

摘要: 目前时序知识图谱广泛存在不完备性等问题,这种不完备性问题严重制约了时序知识图谱在下游任务中的应用及发展。时序知识图谱补全(temporal knowledge graph completion,TKGC)技术能够预测其中缺失的链接,以解决不完备性问题。时序知识图谱补全通过考虑事实的时间维度,以期在捕捉时间信息的基础上获取实体及关系随时间推移发生的变化,这样有助于更准确地完成时序知识图谱补全任务。根据时间信息应用策略的不同对TKGC的最新研究进展进行综述。详尽阐述了TKGC的研究背景,包括问题定义、关键的基准数据集。基于所提出的分类方法介绍了现有的TKGC方法,总结了TKGC在下游任务中的应用。最后提出当前面临的挑战,同时展望未来可能的研究方向。

关键词: 时序知识图谱, 时序知识图谱补全(TKGC), 知识图谱嵌入, 链接预测