[1] ZHOU J, HUANG J X, CHEN Q, et al. Deep learning for aspect-level sentiment classification: survey, vision, and challenges[J]. IEEE Access, 2019, 7: 78454-78483.
[2] 李阳, 王石, 朱俊武, 等. 方面级情感分析综述[J]. 计算机科学, 2023, 50(1): 24-30.
LI Y, WANG S, ZHU J W, et al. ?Summarization of aspect-level sentiment analysis[J]. Computer Science, 2023, 50(1): 24-30.
[3] MADHOUSHI Z, HAMDAN A R, ZAINUDIN S. Aspect-based sentiment analysis methods in recent years[J]. Asia-Pacific Journal of Information Technology and Multimedia, 2019, 7(2): 79-96.
[4] HONG W, LI M. A review of research on text emotional analysis methods[J]. Computer Engineering and Science, 2019, 41(4): 750-757.
[5] LIU B. Sentiment analysis and opinion mining[M]//Synthesis Lectures on Human Language Technologies. Cham: Springer, 2012.
[6] WILSON T, WIEBE J, HOFFMANN P. Recognizing contextual polarity in phrase-level sentiment analysis[C]//Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, 2005: 347-354.
[7] ESULI A, SEBASTIANI F. SentiWordNet: a publicly available lexical resource for opinion mining[C]//Proceedings of the 15th International Conference on Language Resources and Evaluation, 2006.
[8] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[J]. arXiv:1409.0473, 2014.
[9] DONG L, WEI F, TAN C, et al. Adaptive recursive neural network for target-dependent twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, 2014: 49-54.
[10] MA Y, CHENG C L. Joint left and right attention mechanism for aspect-level text sentiment analysis[J]. Application Research of Computers, 2021, 38(6): 1753-1758.
[11] KIRITCHENKO S, ZHU X, CHERRY C, et al. NRC-Canada-2014: detecting aspects and sentiment in customer reviews[C]//Proceedings of the 8th International Workshop on Semantic Evaluation, 2014: 437-442.
[12] XUE W, LI T. Aspect based sentiment analysis with gated convolutional networks[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, 2018: 2514-2523.
[13] TANG D, QIN B, FENG X, et al. Effective LSTMs for target-dependent sentiment classification[C]//Proceedings of the COLING 2016, 26th International Conference on Computational Linguistics: Technical Papers, 2016: 3298-3307.
[14] WANG Y, HUANG M, ZHU X, et al. Attention-based LSTM for aspect-level sentiment classification[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016: 606-615.
[15] WU Z, PAN S, CHEN F, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 4-24
[16] ZHANG C, LI Q, SONG D. Aspect-based sentiment classification with aspect-specific graph convolutional networks[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, 2019: 4568-4578.
[17] ZHOU J, HUANG J X, HU Q V, et al. SK-GCN: modeling syntax and knowledge via graph convolutional network for aspect-level sentiment classification[J]. Knowledge-Based Systems, 2020, 205: 106292.
[18] LIANG B, SU H, GUI L, et al. Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks[J]. Knowledge-Based Systems, 2022, 235: 107643.
[19] 刘路路, 杨燕, 王杰. ABAFN: 面向多模态的方面级情感分析模型[J]. 计算机工程与应用, 2022, 58(10): 193-199.
LIU L L, YANG Y, WANG J. ABAFN:aspect-based sentiment analysis model for multimodal[J]. Computer Engineering and Applications, 2022, 58(10): 193-199.
[20] XU N, MAO W, CHEN G. Multi-interactive memory network for aspect based multimodal sentiment analysis[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 371-378.
[21] YU J, JIANG J, XIA R. Entity-sensitive attention and fusion network for entity-level multimodal sentiment classification[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019, 28: 429-439.
[22] YU J, JIANG J. Adapting BERT for target-oriented multimodal sentiment classification[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019: 5408-5414.
[23] WANG J, GU D, YANG C, et al. Targeted aspect based multimodal sentiment analysis: an attention capsule extraction and multi-head fusion network[J]. arXiv:2103.07659, 2021.
[24] JU X, ZHANG D, XIAO R, et al. Joint multi-modal aspect sentiment analysis with auxiliary cross-modal relation detection[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 2021: 4395- 4405.
[25] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018.
[26] 袁勋, 刘蓉, 刘明. 融合多层注意力的方面级情感分析模型[J]. 计算机工程与应用, 2021, 57(22): 147-152.
YUAN X, LIU R, LIU M. Aspect-level sentiment analysis model incorporating multi-layer attention[J]. Computer Engineering and Applications, 2021, 57(22): 147-152.
[27] KINGMA D P, BA J. ADAM: a method for stochastic optimization[J]. arXiv:1412.6980, 2014.
[28] CHEN P, SUN Z, BING L, et al. Recurrent attention network on memory for aspect sentiment analysis[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, 2017: 452-461.
[29] MA D, LI S, ZHANG X, et al. Interactive attention networks for aspect-level sentiment classification[J]. arXiv:1709.00893, 2017.
[30] LI X, BING L, LAM W, et al. Transformation networks for target-oriented sentiment classification[J]. arXiv:1805. 01086, 2018.
[31] FAN F F, FENG Y S, ZHAO D Y. Multi-grained attention network for aspect-level sentiment classification[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, 2018: 3433-3442. |