[1] 何坚, 郭泽龙, 刘乐园, 等. 基于滑动窗口和卷积神经网络的可穿戴人体活动识别技术[J]. 电子与信息学报, 2022, 44(1): 168-177.
HE J, GUO Z L, LIU L Y, et al. Human activity recognition technology based on sliding window and convolutional neural network[J]. Journal of Electronic Information, 2022, 44(1): 168-177.
[2] 李杰. 结合注意力和纹理特征增强的行人再识别[J]. 计算机科学与探索, 2022, 16(3): 661-668.
LI J. Attention and texture feature enhancement for person re-identification[J]. Journal of Frontiers of Computer Science & Technology, 2022, 16(3): 661-668.
[3] 王发明, 李建微, 陈思喜. 三维人体姿态估计研究综述[J]. 计算机工程与应用, 2021, 57(10): 26-38.
WANG F M, LI J W, CHEN S X. Overview of research on 3D human pose estimation[J]. Computer Engineering Applications, 2021, 57(10): 26-38.
[4] MARTINEZ J, HOSSAIN R, ROMERO J, et al. A simple yet effective baseline for 3D human pose estimation[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2640-2649.
[5] 王仕宸, 黄凯, 陈志刚, 等. 深度学习的三维人体姿态估计综述[J]. 计算机科学与探索, 2023, 17(1): 74-87.
WAND S C, HE K, CHEN Z G, et al. Survey on 3D human pose estimation of deep learning[J]. Journal of Frontiers of Computer Science & Technology, 2023, 17(1): 74-87.
[6] JAHANGIRI E, YUILLE A L. Generating multiple diverse hypotheses for human 3D pose consistent with 2D joint detections[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops, 2017: 805-814.
[7] ZOU Z, TANG W. Modulated graph convolutional network for 3D human pose estimation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 11477-11487.
[8] LI W, LIU H, GUO T, et al. GraphMLP: a graph MLP-like architecture for 3D human pose estimation[J]. arXiv:2206. 06420, 2022.
[9] LIU X, LI P, NI D, et al. LightPose: a lightweight and efficient model with transformer for human pose estimation[C]//Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing, 2022: 2674-2678.
[10] ZHENG C, ZHU S, MENDIETA M, et al. 3D human pose estimation with spatial and temporal transformers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 11656-11665.
[11] LI W, LIU H, TANG H, et al. MHFormer: multi-hypothesis transformer for 3D human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 13147-13156.
[12] DABRAL R, MUNDHADA A, KUSUPATI U, et al. Learning 3D human pose from structure and motion[C]//Proceedings of the European Conference on Computer Vision, 2018: 668-683.
[13] WANDT B, ROSENHAHN B. RepNet: weakly supervised training of an adversarial reprojection network for 3D human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 7782-7791.
[14] WANG L, CHEN Y, GUO Z, et al. Generalizing monocular 3D human pose estimation in the wild[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019.
[15] HOSSAIN M R I, LITTLE J J. Exploiting temporal information for 3D human pose estimation[C]//Proceedings of the European Conference on Computer Vision, 2018: 68-84.
[16] PAVLLO D, FEICHTENHOFER C, GRANGIER D, et al. 3D human pose estimation in video with temporal convolutions and semi-supervised training[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 7753-7762.
[17] CAI Y, GE L, LIU J, et al. Exploiting spatial-temporal relationships for 3D pose estimation via graph convolutional networks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 2272-2281.
[18] WANG J, YAN S, XIONG Y, et al. Motion guided 3D pose estimation from videos[C]//Proceedings of the European Conference on Computer Vision, 2020: 764-780.
[19] ZHAO L, PENG X, TIAN Y, et al. Semantic graph convolutional networks for 3D human pose regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 3425-3435.
[20] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv:1710.10903, 2017.
[21] LIU J, ROJAS J, LI Y, et al. A graph attention spatio-temporal convolutional network for 3D human pose estimation in video[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation, 2021: 3374-3380.
[22] LIU K, DING R, ZOU Z, et al. A comprehensive study of weight sharing in graph networks for 3D human pose estimation[C]//Proceedings of the 16th European Conference on Computer Vision, 2020: 318-334.
[23] CHANG L, QIN F, LI A. A novel backtracking scheme for attitude determination-based initial alignment[J]. IEEE Transactions on Automation Science and Engineering, 2014, 12(1): 384-390.
[24] CAI J, LIU H, DING R, et al. HTNet: human topology aware network for 3D human pose estimation[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2023: 1-5.
[25] LEE K, LEE I, LEE S. Propagating LSTM: 3D pose estimation based on joint interdependency[C]// Proceedings of the European Conference on Computer Vision, 2018: 119-135.
[26] LIN J, LEE G H. Trajectory space factorization for deep video-based 3D human pose estimation[J]. arXiv:1908. 08289, 2019.
[27] LIU R, SHEN J, WANG H, et al. Attention mechanism exploits temporal contexts: real-time 3D human pose reconstruction[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 5064-5073. |